scholarly journals Resistance to miltefosine results from amplification of the RTA3 floppase or inactivation of flippases in Candida parapsilosis

2021 ◽  
Author(s):  
Sean Bergin ◽  
Fang Zhao ◽  
Adam P Ryan ◽  
Carolin A Müller ◽  
Conrad A Nieduszynski ◽  
...  

Flippases and floppases are two classes of proteins that have opposing functions in the maintenance of lipid asymmetry of the plasma membrane. Flippases translocate lipids from the exoplasmic leaflet to the cytosolic leaflet, and floppases act in the opposite direction. Phosphatidylcholine (PC) is a major component of the eukaryotic plasma membrane and is asymmetrically distributed, being more abundant in the exoplasmic leaflet. Here we show that gene amplification of a putative PC floppase or double disruption of two PC flippases in the pathogenic yeast Candida parapsilosis results in resistance to miltefosine, an alkylphosphocholine drug that affects PC metabolism that has recently been granted orphan drug designation approval by the US FDA for treatment of invasive candidiasis. We analysed the genomes of 170 C. parapsilosis isolates and found that 107 of them have copy number variations (CNVs) at the RTA3 gene. RTA3 encodes a putative PC floppase whose deletion is known to increase the inward translocation of PC in Candida albicans. RTA3 copy number ranges from 2 to >40 across the C. parapsilosis isolates. Interestingly, 16 distinct CNVs with unique endpoints were identified, and phylogenetic analysis shows that almost all of them have originated only once. We found that increased copy number of RTA3 correlates with miltefosine resistance. Additionally, we conducted an adaptive laboratory evolution experiment in which two C. parapsilosis isolates were cultured in increasing concentrations of miltefosine over 26 days. Two genes, CPAR2_303950 and CPAR2_102700, gained homozygous protein-disrupting mutations in the evolved strains and code for putative PC flippases homologous to S. cerevisiae DNF1. Our results indicate that alteration of lipid asymmetry across the plasma membrane is a key mechanism of miltefosine resistance. We also find that C. parapsilosis is likely to gain resistance to miltefosine rapidly, because many isolates carry loss-of-function alleles in one of the flippase genes.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Misuzu Ueki ◽  
Kaori Kimura-Kataoka ◽  
Junko Fujihara ◽  
Reiko Iida ◽  
Yasuyuki Kawai ◽  
...  

Abstract Genetic variants, such as single nucleotide polymorphisms (SNPs), in the deoxyribonuclease I (DNase I) gene which remarkably reduce or abolish the activity are assumed to be substantially responsible for the genetic backgrounds determining susceptibility to autoimmune dysfunction. Here, we evaluated many genetic variants, including missense and nonsense SNPs, and indel (inframe) variants in the gene, potentially implicated in autoimmune diseases as functional variants resulting in altered activity levels. Eighteen missense and 7 nonsense SNPs, and 9 indel (inframe) variants were found to result in loss of function and disappearance of DNase I activity. Furthermore, considering the positions in the DNase I protein corresponding to the various nonsense SNPs, all of the other nonsense SNPs and frameshift variants registered in the Ensembl database (https://asia.ensembl.org) appear likely to exert a pathogenetic effect through loss of the activity. Accordingly, a total of 60 genetic variants in the DNase 1 gene (DNASE1) inducing abolishment or marked reduction of the DNase I activity could be identified as genetic risk factors for autoimmunity, irrespective of how sparsely they were distributed in the population. It was noteworthy that SNP p.Gln244Arg, reportedly associated with autoimmunity and reducing the activity to about half of that of the wild type, and SNP p.Arg107Gly, abolishing the activity completely, were distributed worldwide and in African populations at the polymorphic level, respectively. On the other hand, with regard to copy number variations in DNASE1 where loss of copy leads to a reduction of the in vivo enzyme activity, only 2 diploid copy numbers were distributed in Japanese and German populations, demonstrating no loss of copy. These exhaustive data for genetic variants in DNASE1 resulting in loss or marked reduction of the DNase I activity are highly informative when considering genetic predisposition leading to autoimmune dysfunction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dario A. Leon ◽  
Augusto Gonzalez

AbstractData from a long time evolution experiment with Escherichia Coli and from a large study on copy number variations in subjects with European ancestry are analyzed in order to argue that mutations can be described as Levy flights in the mutation space. These Levy flights have at least two components: random single-base substitutions and large DNA rearrangements. From the data, we get estimations for the time rates of both events and the size distribution function of large rearrangements.


2015 ◽  
Vol 156 (49) ◽  
pp. 2009-2012 ◽  
Author(s):  
Judit Bene ◽  
Kinga Hadzsiev ◽  
Katalin Komlósi ◽  
Erzsébet Kövesdi ◽  
Petra Mátyás ◽  
...  

Severe myoclonic epilepsy in infancy (Dravet’s syndrome) is a very rare form of epilepsy. Mutations of SCN1A gene encoding voltage-gated sodium channel alpha-1 subunit are major causes of the autosomal dominant disorder. Most cases are associated with a de novo point mutation, but some patients have copy number variations. The protein encoded by the SCN1A gene plays a role in the generation and propagation of action potentials. Loss of function caused by the majority of gene mutations leads to hyperexcitability of the neuronal network that finally results in the formation of the epileptic seizures. Molecular genetic test for copy number variations of SCN1A gene is available in the department of the authors since 2013 besides sequencing analysis of the whole gene. This article presents the case of a 7-year-old patient with two years of recorded patient history outside of the author’s department. Molecular genetic test, which detected a de novo SCN1A gene deletion in heterozygous form, revealed SCN1A gene associated monogenic epileptic syndrome being in the genetic background of therapy-resistant seizures. Orv. Hetil., 2015, 156(49), 2009–2012.


Author(s):  
Е.А. Фонова ◽  
Е.Н. Толмачева ◽  
А.А. Кашеварова ◽  
М.Е. Лопаткина ◽  
К.А. Павлова ◽  
...  

Смещение инактивации Х-хромосомы может быть следствием и маркером нарушения клеточной пролиферации при вариациях числа копий ДНК на Х-хромосоме. Х-сцепленные CNV выявляются как у женщин с невынашиванием беременности и смещением инактивации Х-хромосомы (с частотой 33,3%), так и у пациентов с умственной отсталостью и смещением инактивацией у их матерей (с частотой 40%). A skewed X-chromosome inactivation can be a consequence and a marker of impaired cell proliferation in the presence of copy number variations (CNV) on the X chromosome. X-linked CNVs are detected in women with miscarriages and a skewed X-chromosome inactivation (with a frequency of 33.3%), as well as in patients with intellectual disability and skewed X-chromosome inactivation in their mothers (with a frequency of 40%).


2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Nayoung Han ◽  
Jung Mi Oh ◽  
In-Wha Kim

For predicting phenotypes and executing precision medicine, combination analysis of single nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim of this study was to discover SNVs or common copy CNVs and examine the combined frequencies of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES), a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%). A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%). Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined using the Korean cohort-based genome-wide association study.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Louisa Lepkes ◽  
Mohamad Kayali ◽  
Britta Blümcke ◽  
Jonas Weber ◽  
Malwina Suszynska ◽  
...  

The identification of germline copy number variants (CNVs) by targeted next-generation sequencing (NGS) frequently relies on in silico CNV prediction tools with unknown sensitivities. We investigated the performances of four in silico CNV prediction tools, including one commercial (Sophia Genetics DDM) and three non-commercial tools (ExomeDepth, GATK gCNV, panelcn.MOPS) in 17 cancer predisposition genes in 4208 female index patients with familial breast and/or ovarian cancer (BC/OC). CNV predictions were verified via multiplex ligation-dependent probe amplification. We identified 77 CNVs in 76 out of 4208 patients (1.81%); 33 CNVs were identified in genes other than BRCA1/2, mostly in ATM, CHEK2, and RAD51C and less frequently in BARD1, MLH1, MSH2, PALB2, PMS2, RAD51D, and TP53. The Sophia Genetics DDM software showed the highest sensitivity; six CNVs were missed by at least one of the non-commercial tools. The positive predictive values ranged from 5.9% (74/1249) for panelcn.MOPS to 79.1% (72/91) for ExomeDepth. Verification of in silico predicted CNVs is required due to high frequencies of false positive predictions, particularly affecting target regions at the extremes of the GC content or target length distributions. CNV detection should not be restricted to BRCA1/2 due to the relevant proportion of CNVs in further BC/OC predisposition genes.


2021 ◽  
Vol 9 (5) ◽  
pp. e001942
Author(s):  
Xu Yang ◽  
Ying Hu ◽  
Keyan Yang ◽  
Dongxu Wang ◽  
Jianzhen Lin ◽  
...  

BackgroundThis study was designed to screen potential biomarkers in plasma cell-free DNA (cfDNA) for predicting the clinical outcome of immune checkpoint inhibitor (ICI)-based therapy in advanced hepatobiliary cancers.MethodsThree cohorts including 187 patients with hepatobiliary cancers were recruited from clinical trials at the Peking Union Medical College Hospital. Forty-three patients received combination therapy of programmed cell death protein 1 (PD-1) inhibitor with lenvatinib (ICI cohort 1), 108 patients received ICI-based therapy (ICI cohort 2) and 36 patients received non-ICI therapy (non-ICI cohort). The plasma cfDNA and blood cell DNA mutation profiles were assessed to identify efficacy biomarkers by a cancer gene-targeted next-generation sequencing panel.ResultsBased on the copy number variations (CNVs) in plasma cfDNA, the CNV risk score model was constructed to predict survival by using the least absolute shrinkage and selection operator Cox regression methods. The results of the two independent ICI-based therapy cohorts showed that patients with lower CNV risk scores had longer overall survival (OS) and progression-free survival (PFS) than those with high CNV risk scores (log-rank p<0.01). In the non-ICI cohort, the CNV risk score was not associated with PFS or OS. Furthermore, the results indicated that 53% of patients with low CNV risk scores achieved durable clinical benefit; in contrast, 88% of patients with high CNV risk scores could not benefit from combination therapy (p<0.05).ConclusionsThe CNVs in plasma cfDNA could predict the clinical outcome of the combination therapy of PD-1 inhibitor with lenvatinib and other ICI-based therapies in hepatobiliary cancers.


Sign in / Sign up

Export Citation Format

Share Document