scholarly journals Brain intrinsic connection patterns underlying tool processing in human adults are present in neonates and not in macaques

2021 ◽  
Author(s):  
Haojie Wen ◽  
Ting Xu ◽  
Xiaoying Wang ◽  
Xi Yu ◽  
Yanchao Bi

Tool understanding and use are supported by a dedicated left-lateralized, intrinsically connected network in the human adult brain. To examine this network's phylogenic and ontogenetic origins, we compared resting-state functional connectivity (rsFC) among regions subserving tool processing in human adults to rsFC among homologous regions in human neonates and macaque monkeys (adolescent and mature). These homologous regions formed an intrinsic network in human neonates, but not in macaques. Network topological patterns were highly similar between human adults and neonates, and significantly less so between humans and macaques. The premotor-parietal rsFC had most significant contribution to the formation of the neonate tool network. These results suggest that an intrinsic brain network potentially supporting tool processing exists in the human brain prior to individual tool use experiences, and that the premotor-parietal functional connection in particular offers a brain basis for complex tool behaviors specific to humans.

2021 ◽  
Vol 12 ◽  
Author(s):  
Joseph J. Taylor ◽  
Hatice Guncu Kurt ◽  
Amit Anand

There are currently no validated treatment biomarkers in psychiatry. Resting State Functional Connectivity (RSFC) is a popular method for investigating the neural correlates of mood disorders, but the breadth of the field makes it difficult to assess progress toward treatment response biomarkers. In this review, we followed general PRISMA guidelines to evaluate the evidence base for mood disorder treatment biomarkers across diagnoses, brain network models, and treatment modalities. We hypothesized that no treatment biomarker would be validated across these domains or with independent datasets. Results are organized, interpreted, and discussed in the context of four popular analytic techniques: (1) reference region (seed-based) analysis, (2) independent component analysis, (3) graph theory analysis, and (4) other methods. Cortico-limbic connectivity is implicated across studies, but there is no single biomarker that spans analyses or that has been replicated in multiple independent datasets. We discuss RSFC limitations and future directions in biomarker development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ramana V. Vishnubhotla ◽  
Rupa Radhakrishnan ◽  
Kestas Kveraga ◽  
Rachael Deardorff ◽  
Chithra Ram ◽  
...  

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI).Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity.Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p < 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p < 0.01).Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Clinical Trials Registration: [https://clinicaltrials.gov], Identifier: [NCT04366544]. Registered on 4/17/2020.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jerome Baranger ◽  
Charlie Demene ◽  
Alice Frerot ◽  
Flora Faure ◽  
Catherine Delanoë ◽  
...  

AbstractClinicians have long been interested in functional brain monitoring, as reversible functional losses often precedes observable irreversible structural insults. By characterizing neonatal functional cerebral networks, resting-state functional connectivity is envisioned to provide early markers of cognitive impairments. Here we present a pioneering bedside deep brain resting-state functional connectivity imaging at 250-μm resolution on human neonates using functional ultrasound. Signal correlations between cerebral regions unveil interhemispheric connectivity in very preterm newborns. Furthermore, fine-grain correlations between homologous pixels are consistent with white/grey matter organization. Finally, dynamic resting-state connectivity reveals a significant occurrence decrease of thalamo-cortical networks for very preterm neonates as compared to control term newborns. The same method also shows abnormal patterns in a congenital seizure disorder case compared with the control group. These results pave the way to infants’ brain continuous monitoring and may enable the identification of abnormal brain development at the bedside.


2018 ◽  
Author(s):  
Caroline Garcia Forlim ◽  
Leonie Klock ◽  
Johanna Baechle ◽  
Laura Stoll ◽  
Patrick Giemsa ◽  
...  

Schizophrenia is described as a disease in which complex psychopathology together with cognitive and behavioral impairments are related to widely disrupted brain circuitry causing a failure in coordinating information across multiple brain sites. This led to the hypothesis of schizophrenia as a network disease e.g. in the cognitive dysmetria model and the dysconnectivity theory. Nevertheless, there is no consensus regarding localized mechanisms, namely dysfunction of certain networks underlying the multifaceted symptomatology. In this study, we investigated potential functional disruptions in 35 schizophrenic patients and 41 controls using complex cerebral network analysis, namely network-based statistic (NBS) and graph theory in resting state fMRI. NBS can reveal locally impaired subnetworks whereas graph analysis characterizes whole brain network topology. Using NBS we observed a local hyperconnected thalamo-cortico-cerebellar subnetwork in the schizophrenia group. Furthermore, nodal graph measures retrieved from the thalamo-cortico-cerebellar subnetwork revealed that the total number of connections from/to (degree) of the thalamus is higher in patients with schizophrenia. Interestingly, graph analysis on the whole brain functional networks did not reveal group differences. Together, our results suggest that disruptions in the brain networks of schizophrenia patients are situated at the local level of the hyperconnected thalamo-cortico-cerebellar rather than globally spread in brain. Our results provide further evidence for the importance of the thalamus and cerebellum in schizophrenia and to the notion that schizophrenia is a network disease in line with the dysconnectivity theory and cognitive dysmetria model.


2021 ◽  
Author(s):  
Vincent Chin-Hung Chen ◽  
Yu-Syuan Chou ◽  
Yuan-Hsiung Tsai ◽  
Yin-Cheng Huang ◽  
Roger S. McIntyre ◽  
...  

2020 ◽  
Author(s):  
Noelia Martinez-Molina ◽  
Sini-Tuuli Siponkoski ◽  
Linda Kuusela ◽  
Sari Laitinen ◽  
Milla Holma ◽  
...  

Traumatic brain injury (TBI) is characterized by a complex pattern of abnormalities in resting-state functional connectivity (rsFC), and neuropathology focused on network dysfunction. Here we report a fMRI study of brain network changes induced during a randomised controlled trial of neurological music therapy in 23 moderate/severe TBI patients. Our ROI-to- ROI approach used four networks as sources: the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and salience (SAL) networks. These networks include high-degree nodes or network hubs, and have all been associated with cognitive impairment after TBI. Furthermore, we investigated the correlation between brain network changes and executive function (EF). Lastly, we implemented a seed-to-voxel analysis to cross-link whole-brain rsFC with brain morphometry results obtained in our previous study of this data. The neurological music therapy increased the coupling between the FPN and DAN as well as between these networks and primary sensory networks that were engaged during musical training. By contrast, the DMN was less connected with sensory networks after the intervention. Similarly, there was a shift towards a less connected state within the FPN and SAL networks, which are typically hyperconnected following TBI. Improvements in EF were correlated with rsFC within the FPN and between the DMN and sensorimotor networks. Finally, the increase in grey matter volume in frontal regions was associated with greater rsFC in areas implicated in music processing. This study is the largest of its kind, and suggests that rsFC in response to music-based rehabilitation may provide sensitive biomarkers of cognitive recovery after TBI.


2022 ◽  
Author(s):  
Hadley Rahrig ◽  
David R. Vago ◽  
Matthew Passarelli ◽  
Allison Auten ◽  
Nicholas A. Lynn ◽  
...  

Abstract This meta-analysis sought to expand upon neurobiological models of mindfulness through investigation of inherent brain network connectivity outcomes, indexed via resting state functional connectivity (rsFC). We conducted a systematic review and meta-analysis of rsFC as an outcome of mindfulness training (MT) relative to structurally-equivalent programs, with the hypothesis that that MT would increase cross-network connectivity between nodes of the Default Mode Network (DMN), Salience Network (SN), and Frontoparietal Control Network (FPCN) as a mechanism of internally-oriented attentional control. Texts were identified from the databases: MEDLINE/PubMed, ERIC, PSYCINFO, ProQuest, Scopus, and Web of Sciences; and were screened for inclusion based on experimental/quasi-experimental trial design and use of standardized mindfulness-based interventions. RsFC effects were extracted from twelve studies (mindfulness n = 226; control n = 204). Voxel-based meta-analysis revealed significantly greater rsFC (MT > control) between the left middle cingulate (Hedge’s g = .234, p = 0288, I2 = 15.87), located within the SN, and the posterior cingulate cortex, a focal hub of the DMN. Egger’s test for publication bias was nonsignificant, bias = 2.17, p = .162. In support of our hypothesis, results suggest that MT targets internetwork (SN-DMN) connectivity implicated in the flexible control of internally-oriented attention.


2019 ◽  
Vol 28 (1S) ◽  
pp. 191-208 ◽  
Author(s):  
Fatima T. Husain ◽  
Sara A. Schmidt ◽  
Yihsin Tai ◽  
Elsa C. Granato ◽  
Pedro Ramos ◽  
...  

Purpose In the past decade, resting-state functional connectivity, acquired using functional magnetic resonance imaging (fMRI), has emerged as a popular measure of tinnitus, especially as related to self-reported handicap or psychological reaction. The goal of this study was to assess replicability of neural correlates of tinnitus, namely, resting-state functional connectivity, in the same individuals acquired over 2 sessions. Method Data were collected at 2 different sites (University of Illinois at Urbana–Champaign and Joint Base San Antonio Wilford Hall Ambulatory Surgical Center) using similar 3T magnets and similar data acquisition paradigms. Thirty-six patients (all civilians) were scanned using resting-state fMRI at the University of Illinois at Urbana–Champaign. Ten patients, active-duty Service members and Veterans, were scanned at the Wilford Hall Ambulatory Surgical Center and the Department of Defense Hearing Center of Excellence. Each participant was scanned twice, a week apart, using identical protocols of 10 min resting-state fMRI. Results Tinnitus handicap scores using the Tinnitus Functional Index and the Tinnitus Primary Function Questionnaire ranged between no or mild handicap to moderately severe handicap but did not significantly differ between visits. We examined the default mode, dorsal attention, and auditory resting-state networks and found that the strength of the within-network functional connections across visit was similar for the attention and default mode networks but not for the auditory network. In addition, the functional connection between the attention network and precuneus, a region of the default mode network, was also replicable across visits. Conclusions Our results show that resting-state fMRI measures are replicable and reliable in patients with a subjective condition, although some networks and functional connections may be more stable than others. This paves the way for using resting-state fMRI to measure the efficacy of tinnitus interventions and as a tool to help propose better management options.


Sign in / Sign up

Export Citation Format

Share Document