scholarly journals An improved organ explant culture method reveals stem cell lineage dynamics in the adult Drosophila intestine

2021 ◽  
Author(s):  
Marco Marchetti ◽  
Chenge Zhang ◽  
Bruce A Edgar

In recent years, live-imaging techniques have been developed for the adult midgut of Drosophila melanogaster that allow temporal characterization of key processes involved in stem cell and tissue homeostasis. However, current organ culture techniques are limited to imaging sessions of <16 hours, an interval too short to track dynamic processes such as damage responses and regeneration, which can unfold over several days. Therefore, we developed a new organ explant culture protocol capable of sustaining midguts ex vivo for up to 3 days. This was made possible by the formulation of a culture medium specifically designed for adult Drosophila tissues with an increased Na+/K+ ratio and trehalose concentration, and by placing midguts at an air-liquid interface for enhanced oxygenation. We show that midgut progenitor cells can respond to gut epithelium damage ex vivo, proliferating and differentiating to replace lost cells, but are quiescent in healthy intestines. Using ex vivo gene induction to promote stem cell proliferation, we demonstrate that intestinal stem lineages can be traced through multiple cell divisions using live imaging. Both asymmetric and symmetric divisions can be identified in the reconstructed lineages. We find that daughter cells of asymmetric divisions remain in close proximity of each other, while the progeny of symmetric divisions actively move apart, with implications for cell differentiation and tissue organization. We show that the same culture set-up is useful for imaging adult renal tubules and ovaries for up to 72 hours. By enabling both long-term imaging and real-time ex vivo gene manipulation, our simple culture protocol provides a powerful tool for studies of epithelial biology and cell lineage behavior.

2020 ◽  
Author(s):  
Yanjun Che ◽  
Sijia Feng ◽  
Jiangbo Guo ◽  
Junjun Hou ◽  
Xuesong Zhu ◽  
...  

Abstract Bone is playing an increasingly critical role in human health and disease. More noninvasive multi-scale imaging techniques are urgently required for investigations on the substructures and biological functions of bones. Our results firstly revealed that our prepared SWIR QDs acted as a bone-specific image contrast to achieve real-time imaging of bone structures both in vivo and ex vivo. The major bone structures of both Balb/C nude mouse and Balb/C mouse including the skull, spine, pelvis, limbs and the sternum could be rapidly and gradually identified via blood circulation after QDs injection in vivo. More importantly, the binding capability of our QDs mainly depend on the biological activities of bone tissues, suggesting our technique was suitable for in vivo live imaging. Additionally, the cell imaging results suggested that the potential mechanism of our bone imaging could be ascribed to the highly specific interaction between QDs and MC3T3-E1 cells. In a word, skeletal structures and biological activities of bones are anticipated to be observed and monitored with this QDs-guided SWIR imaging strategy, respectively. This radiation-free QDs-guided SWIR live imaging of bone can put new insights into a comprehensive study of bones in vivo and provide basis for early diagnosis of bone diseases.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3463-3473 ◽  
Author(s):  
MO Muench ◽  
MT Firpo ◽  
MA Moore

Abstract Cytokine combinations were tested for their ability to expand murine bone marrow (BM) progenitors in short-term suspension cultures (delta- cultures) with the aim of providing an enriched source of progenitors for BM transplantation (BMT). In a comparison of the efficacy of the combinations interleukin-1 (IL-1) + IL-3, IL-1 + kit-ligand (KL), and IL-1 + IL-6 + KL, BMT with IL-1 + KL expanded progenitors was found to be most effective in accelerating the recovery of peripheral blood leukocytes, platelets, and erythrocytes in lethally irradiated mice. The ex vivo expansion of BM in IL-1 + KL-stimulated delta-cultures also greatly reduced the number of transplanted cells needed to provide radioprotection. All mice survived at least 30 days when receiving 5 x 10(3) delta-cultured d1 5-fluorouracil (5-FU) BM cells (BM cells harvested 1 day after 5-FU administration), whereas complete survival of mice receiving fresh d1 5-FU BM required BMT with a 200-fold greater number of cells. BMT with expanded BM lead to predominantly donor- derived hematopoietic reconstitution for 280 days postprimary BMT and another 71 days after secondary BMT. The expansion of BM did not adversely effect the proliferative capacity and lineage potential of the stem cell compartment.


Development ◽  
2021 ◽  
Author(s):  
Gema Villa-Fombuena ◽  
María Lobo-Pecellín ◽  
Miriam Marín-Menguiano ◽  
Patricia Rojas-Ríos ◽  
Acaimo González-Reyes

Drosophila female germline stem cells (GSCs) are found inside the cellular niche at the tip of the ovary. They undergo asymmetric divisions to renew the stem cell lineage and to produce sibling cystoblasts that will in turn enter differentiation. GSCs and cystoblasts contain spectrosomes, membranous structures essential to orientate the mitotic spindle and that, particularly in GSCs, change shape depending on the cell cycle phase. Using live imaging and a GFP fusion of the spectrosome component Par-1, we follow the complete spectrosome cycle throughout GSC division and quantify the relative duration of the different spectrosome shapes. We also determine that the Par-1 kinase shuttles between the spectrosome and the cytoplasm during mitosis and observe the continuous addition of new material to the GSC and cystoblast spectrosomes. Next, we utilise the Fly-FUCCI tool to define in live and fixed tissues that GSCs have a shorter G1 compared to the G2 phase. The observation of centrosomes in dividing GSCs allowed us to determine that centrosomes separate very early in G1, prior to centriole duplication. Furthermore, we show that the anterior centrosome associates with the spectrosome only during mitosis and that, upon mitotic spindle assembly, it translocates to the cell cortex, where it remains anchored until centrosome separation. Finally, we demonstrate that the asymmetric division of GSCs is not an intrinsic property of these cells, since the spectrosome of GSC-like cells located outside of the niche can divide symmetrically. Thus, GSCs display unique properties during division, a behaviour influenced by the surrounding niche.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3463-3473 ◽  
Author(s):  
MO Muench ◽  
MT Firpo ◽  
MA Moore

Cytokine combinations were tested for their ability to expand murine bone marrow (BM) progenitors in short-term suspension cultures (delta- cultures) with the aim of providing an enriched source of progenitors for BM transplantation (BMT). In a comparison of the efficacy of the combinations interleukin-1 (IL-1) + IL-3, IL-1 + kit-ligand (KL), and IL-1 + IL-6 + KL, BMT with IL-1 + KL expanded progenitors was found to be most effective in accelerating the recovery of peripheral blood leukocytes, platelets, and erythrocytes in lethally irradiated mice. The ex vivo expansion of BM in IL-1 + KL-stimulated delta-cultures also greatly reduced the number of transplanted cells needed to provide radioprotection. All mice survived at least 30 days when receiving 5 x 10(3) delta-cultured d1 5-fluorouracil (5-FU) BM cells (BM cells harvested 1 day after 5-FU administration), whereas complete survival of mice receiving fresh d1 5-FU BM required BMT with a 200-fold greater number of cells. BMT with expanded BM lead to predominantly donor- derived hematopoietic reconstitution for 280 days postprimary BMT and another 71 days after secondary BMT. The expansion of BM did not adversely effect the proliferative capacity and lineage potential of the stem cell compartment.


Sign in / Sign up

Export Citation Format

Share Document