scholarly journals CameraEEG: Synchronized Recording of Video with Electroencephalogram data on an Android Application

2021 ◽  
Author(s):  
Srihari Madhavan ◽  
Doli Hazarika ◽  
Cota Navin Gupta

We present a novel android application named CameraEEG that enables synchronized acquisition of Electroencephalogram(EEG) and camera data using a smartphone. Audio-visual events of interest experienced by the subject were also recorded using a button press on the CameraEEG app. Unlike lab-restricted experiments, which usually constrain the subject's mobility, this wearable solution enables monitoring of the human brain during everyday life activities. The app was built using Android SDK version 28 and Smarting mobi SDK from mbraintrain. It works on all android devices having a minimum Android OS - Lollipop. We successfully recorded thirty minutes of synchronized Video and EEG during eyes closed and walking tasks using the app. Event markers enabled by the subject using the app during walking tasks were also recorded. Timing tests showed that temporal synchronization of video and EEG data was good. We analysed the recorded data and were able to identify the task performed by the subject from the event markers. The power spectrum density of the two tasks showed different power spectrums with a peak in the alpha band for eyes closed task. We also provide android studio codes for download and detailed help documentation for the community to test the developed application.

2007 ◽  
Vol 17 (02) ◽  
pp. 61-69 ◽  
Author(s):  
MARK A. KRAMER ◽  
FEN-LEI CHANG ◽  
MAURICE E. COHEN ◽  
DONNA HUDSON ◽  
ANDREW J. SZERI

Three synchronization measures are applied to scalp electroencephalogram (EEG) data collected from 20 patients diagnosed to have either: (1) no dementia, (2) mild cognitive impairment (MCI), or (3) Alzheimer's disease (AD). We apply the three synchronization measures — the phase synchronization, and two measures of nonlinear interdependency — to the data collected from awake patients resting with eyes closed. We show that the synchronization in potential between electrodes near the left and right occipital lobes provides a statistically significant discriminant between the healthy and AD subjects, and the MCI and AD subjects. None of the three measures appears able to distinguish between the healthy and MCI subjects, although MCI subjects show synchronization values intermediate between healthy subjects (with high synchronization values) and AD subjects (with low synchronization values) on average.


Author(s):  
José Humberto Trueba Perdomo ◽  
◽  
Ignacio Herrera Aguilar ◽  
Francesca Gasparini ◽  
◽  
...  

This paper presents a new application for analyzing electroencephalogram (EEG) signals. The signals are pre-filtered through MATLAB's EEGLAB tool. The created application performs a convolution between the original EEG signal and a complex Morlet wavelet. As a final result, the application shows the signal power value and a spectrogram of the convoluted signal. Moreover, the created application compares different EEG channels at the same time, in a fast and straightforward way, through a time and frequency analysis. Finally, the effectiveness of the created application was demonstrated by performing an analysis of the alpha signals of healthy subjects, one signal created by the subject with eyes closed and the other, with which it was compared, was created by the same subject with eyes open. This also served to demonstrate that the power of the alpha band of the closed-eyed signal is higher than the power of the open-eyed signal.


2021 ◽  
Vol 14 (01) ◽  
pp. 519-524
Author(s):  
Mohd. Maroof Siddiqui ◽  
Ruchin Jain

This sleep disorder is reflected as the changes in the electrical activities and chemical activities in the brain that can be observed by capturing the brain signals and the images. In this research, Short Time-frequency analysis of Power Spectrum Density (STFAPSD) approach applied on Electroencephalogram (EEG) Signals for prediction of RBD sleep disorder. Collection of Electroencephalogram (EEG) of normal subjects & different type of sleep disordered subjects & application of signal processing on EEG data for development the algorithm for detection of sleep disorder and implementation in MATLAB.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 139
Author(s):  
Claudio Ciprian ◽  
Kirill Masychev ◽  
Maryam Ravan ◽  
Akshaya Manimaran ◽  
AnkitaAmol Deshmukh

Schizophrenia is a serious mental illness associated with neurobiological deficits. Even though the brain activities during tasks (i.e., P300 activities) are considered as biomarkers to diagnose schizophrenia, brain activities at rest have the potential to show an inherent dysfunctionality in schizophrenia and can be used to understand the cognitive deficits in these patients. In this study, we developed a machine learning algorithm (MLA) based on eyes closed resting-state electroencephalogram (EEG) datasets, which record the neural activity in the absence of any tasks or external stimuli given to the subjects, aiming to distinguish schizophrenic patients (SCZs) from healthy controls (HCs). The MLA has two steps. In the first step, symbolic transfer entropy (STE), which is a measure of effective connectivity, is applied to resting-state EEG data. In the second step, the MLA uses the STE matrix to find a set of features that can successfully discriminate SCZ from HC. From the results, we found that the MLA could achieve a total accuracy of 96.92%, with a sensitivity of 95%, a specificity of 98.57%, precision of 98.33%, F1-score of 0.97, and Matthews correlation coefficient (MCC) of 0.94 using only 10 out of 1900 STE features, which implies that the STE matrix extracted from resting-state EEG data may be a promising tool for the clinical diagnosis of schizophrenia.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2178
Author(s):  
Fabrizio Vecchio ◽  
Francesca Miraglia ◽  
Chiara Pappalettera ◽  
Alessandro Orticoni ◽  
Francesca Alù ◽  
...  

Brain complexity can be revealed even through a comparison between two trivial conditions, such as eyes open and eyes closed (EO and EC respectively) during resting. Electroencephalogram (EEG) has been widely used to investigate brain networks, and several non-linear approaches have been applied to investigate EO and EC signals modulation, both symmetric and not. Entropy is one of the approaches used to evaluate the system disorder. This study explores the differences in the EO and EC awake brain dynamics by measuring entropy. In particular, an approximate entropy (ApEn) was measured, focusing on the specific cerebral areas (frontal, central, parietal, occipital, temporal) on EEG data of 37 adult healthy subjects while resting. Each participant was submitted to an EO and an EC resting EEG recording in two separate sessions. The results showed that in the EO condition the cerebral networks of the subjects are characterized by higher values of entropy than in the EC condition. All the cerebral regions are subjected to this chaotic behavior, symmetrically in both hemispheres, proving the complexity of networks dynamics dependence from the subject brain state. Remarkable dynamics regarding cerebral networks during simple resting and awake brain states are shown by entropy. The application of this parameter can be also extended to neurological conditions, to establish and monitor personalized rehabilitation treatments.


2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Anna Kaiser ◽  
Pascal-M. Aggensteiner ◽  
Martin Holtmann ◽  
Andreas Fallgatter ◽  
Marcel Romanos ◽  
...  

Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.


1999 ◽  
Vol 10 (04) ◽  
pp. 759-776
Author(s):  
D. R. KULKARNI ◽  
J. C. PARIKH ◽  
R. PRATAP

Electroencephalograph (EEG) data for normal individuals with eyes-closed and under stimuli is analyzed. The stimuli consisted of photo, audio, motor and mental activity. We use several measures from nonlinear dynamics to analyze and characterize the data. We find that the dynamics of the EEG signal is deterministic and chaotic but it is not a low dimensional chaotic system. The evoked responses lead to a redistribution of strengths relative to eyes-closed data. Basically, strength in α waves decreases whereas that in β wave increases. We also carried out simulations separately and in combination for δ, θ, α and β waves to understand the data. From the simulation results, it appears that the characteristics of EEG data are consequences of filtering the data with a relatively small range of frequency (0.5–32 Hz). In view of this, we believe that calculation of known nonlinear measures is not likely to be very useful for studying the dynamics of EEG data. We have also successfully modeled the EEG time series using the concept of state space reconstruction in the framework of artificial neural network. It gives us confidence that one would be able to understand, in a more basic way, how collectivity in EEG signal arises.


Author(s):  
Sean Tanabe ◽  
Maggie Parker ◽  
Richard Lennertz ◽  
Robert A Pearce ◽  
Matthew I Banks ◽  
...  

Abstract Delirium is associated with electroencephalogram (EEG) slowing and impairments in connectivity. We hypothesized that delirium would be accompanied by a reduction in the available cortical information (i.e. there is less information processing occurring), as measured by a surrogate, Lempil-Ziv Complexity (LZC), a measure of time-domain complexity. Two ongoing perioperative cohort studies (NCT03124303, NCT02926417) contributed EEG data from 91 patients before and after surgery; 89 participants were used in the analyses. After cleaning and filtering (0.1-50Hz), the perioperative change in LZC and LZC normalized (LZCn) to a phase-shuffled distribution were calculated. The primary outcome was the correlation of within-patient paired changes in delirium severity (Delirium Rating Scale-98 [DRS]) and LZC. Scalp-wide threshold free cluster enhancement was employed for multiple comparison correction. LZC negatively correlated with DRS in a scalp-wide manner (peak channel r 2=0.199, p<0.001). This whole brain effect remained for LZCn, though the correlations were weaker (peak channel r 2=0.076, p=0.010). Delirium diagnosis was similarly associated with decreases in LZC (peak channel p<0.001). For LZCn, the topological significance was constrained to the midline posterior regions (peak channel p=0.006). We found a negative correlation of LZC in the posterior and temporal regions with monocyte chemoattractant protein-1 (peak channel r 2=0.264, p<0.001, n=47) but not for LZCn. Complexity of the EEG signal fades proportionately to delirium severity implying reduced cortical information. Peripheral inflammation, as assessed by monocyte chemoattractant protein-1, does not entirely account for this effect, suggesting that additional pathogenic mechanisms are involved.


2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Robert Leeb ◽  
Doron Friedman ◽  
Gernot R. Müller-Putz ◽  
Reinhold Scherer ◽  
Mel Slater ◽  
...  

The aim of the present study was to demonstrate for the first time that brain waves can be used by a tetraplegic to control movements of his wheelchair in virtual reality (VR). In this case study, the spinal cord injured (SCI) subject was able to generate bursts of beta oscillations in the electroencephalogram (EEG) by imagination of movements of his paralyzed feet. These beta oscillations were used for a self-paced (asynchronous) brain-computer interface (BCI) control based on a single bipolar EEG recording. The subject was placed inside a virtual street populated with avatars. The task was to “go” from avatar to avatar towards the end of the street, but to stop at each avatar and talk to them. In average, the participant was able to successfully perform this asynchronous experiment with a performance of 90%, single runs up to 100%.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


Sign in / Sign up

Export Citation Format

Share Document