scholarly journals A lung targeted miR-29 Mimic as a Therapy for Pulmonary Fibrosis

2021 ◽  
Author(s):  
Maurizio Chioccioli ◽  
Subhadeep Roy ◽  
Kevin Rigby ◽  
Rachel Newell ◽  
Oliver Dansereau ◽  
...  

AbstractmicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported a systemically delivered miR-29 mimic MRG-201 that reduced fibrosis in animal models, but at doses prohibiting clinical translation. Here, we generated MRG-229, a next-gen miR-29 mimic with improved chemical stability, conjugated with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide). In TGF-b-treated human lung fibroblasts and precision cut lung slices, MRG-229 decreased COL1A1 and ACTA2 gene expression and reduced collagen production. In bleomycin-treated mice, intravenous or subcutaneous delivery of MRG-229 downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, and at clinically relevant doses, MRG-229 was well tolerated, with no adverse findings observed. In human peripheral blood decreased mir-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. Collectively, our results provide support for the development of MRG-229 as a potential therapy in humans with IPF.One Sentence SummaryOne Sentence Summary: A stabilized, next-generation miR-29 mimic has been developed that demonstrates efficacy at commercially viable doses with a robust safety margin in non-human primates.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1868
Author(s):  
Anna Löfdahl ◽  
Andreas Jern ◽  
Samuel Flyman ◽  
Monica Kåredal ◽  
Hanna L Karlsson ◽  
...  

Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 μg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 μg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Ryota Kikuchi ◽  
Yuki Maeda ◽  
Takao Tsuji ◽  
Kazuhiro Yamaguchi ◽  
Shinji Abe ◽  
...  

1981 ◽  
Vol 256 (6) ◽  
pp. 3135-3140
Author(s):  
P. Tolstoshev ◽  
R.A. Berg ◽  
S.I. Rennard ◽  
K.H. Bradley ◽  
B.C. Trapnell ◽  
...  

2015 ◽  
Vol 309 (8) ◽  
pp. L821-L833 ◽  
Author(s):  
Anurag Mishra ◽  
Todd A. Stueckle ◽  
Robert R. Mercer ◽  
Raymond Derk ◽  
Yon Rojanasakul ◽  
...  

Carbon nanotubes (CNTs) induce rapid interstitial lung fibrosis, but the underlying mechanisms are unclear. Previous studies indicated that the ability of CNTs to penetrate lung epithelium, enter interstitial tissue, and stimulate fibroblasts to produce collagen matrix is important to lung fibrosis. In this study, we investigated the activation of transforming growth factor-β receptor-1 [TGF-β R1; i.e., activin receptor-like kinase 5 (ALK5) receptor] and TGF-β/Smad signaling pathway in CNT-induced collagen production in human lung fibroblasts. Human lung fibroblasts and epithelial cells were exposed to low, physiologically relevant concentrations (0.02–0.6 μg/cm2) of single-walled CNTs (SWCNT) and multiwalled CNTs (MWCNT) in culture and analyzed for collagen, TGF-β1, TGF-β R1, and SMAD proteins by Western blotting and immunofluorescence. Chemical inhibition of ALK5 and short-hairpin (sh) RNA targeting of TGF-β R1 and Smad2 were used to probe the fibrogenic mechanism of CNTs. Both SWCNT and MWCNT induced an overexpression of TGF-β1, TGF-β R1 and Smad2/3 proteins in lung fibroblasts compared with vehicle or ultrafine carbon black-exposed controls. SWCNT- and MWCNT-induced collagen production was blocked by ALK5 inhibitor or shRNA knockdown of TGF-β R1 and Smad2. Our results indicate the critical role of TGF-β R1/Smad2/3 signaling in CNT-induced fibrogenesis by upregulating collagen production in lung fibroblasts. This novel finding may aid in the design of mechanism-based risk assessment and development of rapid screening tests for nanomaterial fibrogenicity.


Sign in / Sign up

Export Citation Format

Share Document