Molecular liver fingerprint reflects the seasonal physiology of the grey mouse lemur (Microcebus murinus) during winter

2021 ◽  
Author(s):  
Blandine Chazarin ◽  
Margaux Benhaim-Delarbre ◽  
Charlotte Brun ◽  
Aude Anzeraey ◽  
Fabrice Bertile ◽  
...  

Grey mouse lemurs (Microcebus murinus) are a primate species exhibiting strong physiological seasonality in response to environmental energetic constraint. They notably store large amounts of lipids during early winter (EW), which are thereafter mobilized during late winter (LW), when food availability is low. In addition, they develop glucose intolerance in LW only. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, which seasonal regulations of metabolism and reproduction are comparable to their wild counterparts, during the phases of either constitution or use of fat reserves. We highlight profound changes that reflect fat accretion in EW at the whole-body level, however, without triggering an ectopic storage of fat in the liver. Moreover, molecular regulations would be in line with the lowering of liver glucose utilization in LW, and thus with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways, which suggests that glucose intolerance does not reach a pathological stage. Finally, fat mobilization in LW appeared possibly linked to reactivation of the reproductive system and enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Altogether, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while avoiding reaching a pathological state despite large lipid fluxes. This work emphasizes how the mouse lemur is of primary interest for identifying molecular mechanisms relevant to biomedical field.

2020 ◽  
pp. 1-11
Author(s):  
Travis S. Steffens ◽  
Malcolm S. Ramsay ◽  
Bertrand Andriatsitohaina ◽  
Ute Radespiel ◽  
Shawn M. Lehman

Madagascar is home to many threatened and endemic primate species, yet this island has seen dramatic declines in lemur habitat due to forest loss. This forest loss has resulted in an increasingly fragmented forest landscape, with fragments isolated from each other by grasslands (i.e., matrix). The grassland matrix is not entirely homogeneous containing matrix elements such as isolated trees and shrubs and linear features such as drainage lines. Because most lemurs are predominantly arboreal, they may preferentially use matrix elements to facilitate dispersal between fragments for access to mates or reduce feeding competition, allowing gene flow between fragments of habitat. Therefore, it is important to understand to what degree they use the matrix. We investigated matrix use in two mouse lemurs, the grey mouse lemur (<i>Microcebus murinus</i>) and the golden-brown mouse lemur (<i>Microcebus ravelobensis</i>) in a fragmented landscape in northwest Madagascar. We tested the predictions that: (1) lemurs use matrix less often than forest fragments, (2) if they use the matrix, then they will preferentially use matrix elements compared to grassland, and (3) <i>M. murinus</i> will disperse into the matrix further than <i>M. ravelobensis</i>. In 2011, we visually surveyed line transects in four areas containing matrix elements and four adjacent forest fragments during nocturnal walks. In 2017, we set up traplines in four areas of the matrix containing matrix elements, three areas that were grassland, and six traplines in adjacent fragments. We compared the relative abundance of mouse lemurs in matrix transects to fragmented forest transects, and the relative abundance of captured lemurs in matrix elements, grassland, and fragment traplines. We found that encounter rates of mouse lemurs did not significantly differ between the matrix and fragmented forest transects or traplines. Our sample size was too low to determine if the mean distance from the forest was greater for either <i>Microcebus</i> spp. Our study highlights that mouse lemurs do use matrix elements and there may be interspecific differences in use. Further research is needed to confirm species-specific matrix use, why mouse lemurs use matrix, and how much matrix elements facilitate movement for each species in fragmented landscapes.


1992 ◽  
Vol 26 (3) ◽  
pp. 191-202 ◽  
Author(s):  
Deanna L. Dodson ◽  
Donna Stafford ◽  
Chris Forsythe ◽  
Charles P. Seltzer ◽  
Jeannette P. Ward

2017 ◽  
Vol 42 (2) ◽  
pp. 221-230 ◽  
Author(s):  
J Terrien ◽  
M Gaudubois ◽  
D Champeval ◽  
V Zaninotto ◽  
L Roger ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1700
Author(s):  
Yun-Yun Fan ◽  
Yu-Wei Zhong ◽  
Jing Zhao ◽  
Yao Chi ◽  
Sophie Bouvaine ◽  
...  

Begomoviruses cause substantial losses to agricultural production, especially in tropical and subtropical regions, and are exclusively transmitted by members of the whitefly Bemisia tabaci species complex. However, the molecular mechanisms underlying the transmission of begomoviruses by their whitefly vector are not clear. In this study, we found that B. tabaci vesicle-associated membrane protein 2 (BtVAMP2) interacts with the coat protein (CP) of tomato yellow leaf curl virus (TYLCV), an emergent begomovirus that seriously impacts tomato production globally. After infection with TYLCV, the transcription of BtVAMP2 was increased. When the BtVAMP2 protein was blocked by feeding with a specific BtVAMP2 antibody, the quantity of TYLCV in B. tabaci whole body was significantly reduced. BtVAMP2 was found to be conserved among the B. tabaci species complex and also interacts with the CP of Sri Lankan cassava mosaic virus (SLCMV). When feeding with BtVAMP2 antibody, the acquisition quantity of SLCMV in whitefly whole body was also decreased significantly. Overall, our results demonstrate that BtVAMP2 interacts with the CP of begomoviruses and promotes their acquisition by whitefly.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1346
Author(s):  
Priya Veluswamy ◽  
Max Wacker ◽  
Dimitrios Stavridis ◽  
Thomas Reichel ◽  
Hendrik Schmidt ◽  
...  

The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.


2012 ◽  
Vol 26 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Kristin A. Anderson ◽  
Fumin Lin ◽  
Thomas J. Ribar ◽  
Robert D. Stevens ◽  
Michael J. Muehlbauer ◽  
...  

Abstract Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/CaM-dependent protein kinase family that is expressed abundantly in brain. Previous work has revealed that CaMKK2 knockout (CaMKK2 KO) mice eat less due to a central nervous system -signaling defect and are protected from diet-induced obesity, glucose intolerance, and insulin resistance. However, here we show that pair feeding of wild-type mice to match food consumption of CAMKK2 mice slows weight gain but fails to protect from diet-induced glucose intolerance, suggesting that other alterations in CaMKK2 KO mice are responsible for their improved glucose metabolism. CaMKK2 is shown to be expressed in liver and acute, specific reduction of the kinase in the liver of high-fat diet-fed CaMKK2floxed mice results in lowered blood glucose and improved glucose tolerance. Primary hepatocytes isolated from CaMKK2 KO mice produce less glucose and have decreased mRNA encoding peroxisome proliferator-activated receptor γ coactivator 1-α and the gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, and these mRNA fail to respond specifically to the stimulatory effect of catecholamine in a cell-autonomous manner. The mechanism responsible for suppressed gene induction in CaMKK2 KO hepatocytes may involve diminished phosphorylation of histone deacetylase 5, an event necessary in some contexts for derepression of the peroxisome proliferator-activated receptor γ coactivator 1-α promoter. Hepatocytes from CaMKK2 KO mice also show increased rates of de novo lipogenesis and fat oxidation. The changes in fat metabolism observed correlate with steatotic liver and altered acyl carnitine metabolomic profiles in CaMKK2 KO mice. Collectively, these results are consistent with suppressed catecholamine-induced induction of gluconeogenic gene expression in CaMKK2 KO mice that leads to improved whole-body glucose homeostasis despite the presence of increased hepatic fat content.


Sign in / Sign up

Export Citation Format

Share Document