scholarly journals Correlation of receptor density and mRNA expression patterns in the human cerebral cortex

2021 ◽  
Author(s):  
Matej Murgaš ◽  
Paul Michenthaler ◽  
Murray Bruce Reed ◽  
Gregor Gryglewski ◽  
Rupert Lanzenberger

Changes in distribution of associated molecular targets have been reported across several neuropsychiatric disorders. However, the high-resolution topology of most proteins is unknown and simultaneous in vivo measurement in multi-receptor systems is complicated. To account for the missing proteomic information, mRNA transcripts are typically used as a surrogate. Nonetheless, post-transcriptional and post-translational processes might cause the discrepancy between the final distribution of proteins and gene expression patterns. Therefore, this study aims to investigate ex vivo links between mRNA expression and corresponding receptor density in the human cerebral cortex. To this end, autoradiography data on the density of 15 different receptors in 38 brain regions were correlated with the expression patterns of 50 associated genes derived from microarray data (mA), RNA sequencing data (RNA-Seq) provided by the Allen Human Brain Atlas and predicted mRNA expression patterns (pred-mRNA). Spearman's rank correlation was used to evaluate the possible links between proteomic data and mRNA expression patterns. Correlations between mRNA and protein density varied greatly between targets: Positive associations were found for e.g. the serotonin 1A (pred-mRNA: rs = 0.708; mA: rs = 0.601) or kainate receptor (pred-mRNA: rs = 0.655; mA: rs = 0.601; RNA-Seq: rs = 0.575), while most of the investigated target receptors showed low or negative correlations. The high variability in the correspondence of mRNA expression and receptor warrants caution when inferring the topology of molecular targets in the brain from transcriptome data. This highlights the longstanding value of molecular imaging data and the need for comprehensive proteomic data.

2020 ◽  
Vol 75 (3) ◽  
pp. 226-233
Author(s):  
Svetlana P. Sergeeva ◽  
Aleksey V. Lyundup ◽  
Valery V. Beregovykh ◽  
Petr F. Litvitskiy ◽  
Aleksey A. Savin ◽  
...  

Background. The search for protein (these include c-fos, ERK1/2, MAP2, NOTCH1) expression that provide neuroplasticity mechanisms of the cerebral cortex after ischemic stroke (IS) patterns is an urgent task. Aims to reveal c-fos, ERK1/2, MAP2, NOTCH1 proteins expression patterns in human cerebral cortex neurons after IS. Materials and methods. We studied 9 left middle cerebral artery (LMCA) IS patients cerebral cortex samples from 3 zones: 1 the zone adjacent to the necrotic tissue focus; 2 zone remote from the previous one by 47 cm; 3 zone of the contralateral hemisphere, symmetric to the IS focus. Control samples were obtained from 3 accident died people. Identification of targeted proteins NSE, c-fos, ERK1/2, MAP2, NOTCH1 was performed by indirect immunoperoxidase immunohistochemical method. Results. Moving away from the ischemic focus, there is an increase in the density of neurons and a decrease in the damaged neurons proportion, the largest share of c-fos protein positive neurons in zone 2, NOTCH1 positive neurons in zone 1, smaller fractions of ERK1/2 and MAP2 positive neurons compared to the control only in samples of zone 1. Conclusions. With the IS development, the contralateral hemisphere is intact tissue increased activation zone, while the zones 1 and 2 have pathological activation signs. In zone 1 of the range, the adaptive response of the tissue decreases, and in zone 2 it expands. Therefore, a key target for therapeutic intervention is zone 2.


Blood ◽  
2011 ◽  
Vol 118 (7) ◽  
pp. 1903-1911 ◽  
Author(s):  
Luca Cecchetti ◽  
Neal D. Tolley ◽  
Noemi Michetti ◽  
Loredana Bury ◽  
Andrew S. Weyrich ◽  
...  

Abstract Megakaryocytes transfer a diverse and functional transcriptome to platelets during the final stages of thrombopoiesis. In platelets, these transcripts reflect the expression of their corresponding proteins and, in some cases, serve as a template for translation. It is not known, however, if megakaryocytes differentially sort mRNAs into platelets. Given their critical role in vascular remodeling and inflammation, we determined whether megakaryocytes selectively dispense transcripts for matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) into platelets. Next-generation sequencing (RNA-Seq) revealed that megakaryocytes express mRNA for 10 of the 24 human MMP family members. mRNA for all of these MMPs are present in platelets with the exception of MMP-2, 14, and 15. Megakaryocytes and platelets also express mRNA for TIMPs 1-3, but not TIMP-4. mRNA expression patterns predicted the presence and, in most cases, the abundance of each corresponding protein. Nonetheless, exceptions were observed: MMP-2 protein is present in platelets but not its transcript. In contrast, quiescent platelets express TIMP-2 mRNA but only traces of TIMP-2 protein. In response to activating signals, however, platelets synthesize significant amounts of TIMP-2 protein. These results demonstrate that megakaryocytes differentially express mRNAs for MMPs and TIMPs and selectively transfer a subset of these into platelets. Among the platelet messages, TIMP-2 serves as a template for signal-dependent translation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3427-3427
Author(s):  
Michael H Kramer ◽  
Qiang Zhang ◽  
Robert W. Sprung ◽  
Petra Erdmann-Gilmore ◽  
Daniel R George ◽  
...  

Abstract Introduction: Proteins, despite being the primary effectors of cellular processes, are often studied only indirectly through analysis of the transcriptome. However, it is clear that the relationship between mRNA expression and protein expression is approximate at best. In Acute Myeloid Leukemia (AML), the genome and transcriptome have been thoroughly characterized, but the proteome has been less well studied. Here, we present a deep-scale study of the proteomes of 44 primary AML bone marrow samples representing a wide range of AML across the spectrum of cytogenetic risk, common mutations, and driver fusions. Methods: Bone marrow samples were collected at presentation from 44 adult patients with de novo AML as part of an institutional banking protocol, and buffy coat cells were immediately cryopreserved without further manipulation. Cryovials were thawed in the presence of the cell permeable serine protease inhibitor diisopropyl fluorophosphate (DFP) to inactivate the abundant neutrophil serine proteases (ELANE, CTSG, PRTN3, and PRSS57), and further processed for nano-liquid chromatography mass spectrometry in the presence of an extensive cocktail of protease inhibitors. Both label-free quantification (LFQ) and tandem-mass-tag (TMT) deep-scale proteomics were performed on these 44 patient samples, as well as 3 lineage-depleted bone marrow samples from healthy adult donors. Matching RNA-seq and exome sequencing data were available for the same samples as part of The Cancer Genome Atlas (TCGA) AML project. Results: 10,651 and 6,679 unique proteins were detected in the TMT and LFQ experiments, respectively. Correlations between measurements derived from the independent proteomic platforms (i.e. TMT and LFQ) is higher (mean Spearman correlation, 0.60, Figure 1A) than correlation between proteomic (TMT) and transcriptomic measurements from bulk RNA-seq data (Spearman 0.43, Figure 1B). Quality checks of the proteomic data strongly supported the reliability of quantification of protein measurements; for example, the mean ratio of beta globin protein (HBB) to alpha globin (HBA1) was 1.2 +/- 0.25 (Figure 1C), and several proteins known to be dysregulated by specific AML-initiating fusion proteins (for PML-RARA, HGF and RARA; for RUNX1-RUNX1T1, RUNX1T1; and for CBFB-MYH11, MYH11) were detected in the expected samples (Figure 1D). Globally, 1,364 proteins were differentially expressed in the AML samples (corrected p-value <0.05, fold change ≥ 1.5) compared to the lineage-depleted, healthy bone marrow samples. Globally overexpressed proteins were enriched for ribosomal RNA modification, mitochondrial protein import, nuclear export, and the mitochondrial electron transport chain, among others. These overexpressed proteins include 61 cell surface proteins that could potentially represent therapeutic targets (overexpressed on average in 82% of AML samples, range 25-97%). Globally downregulated proteins in AML samples were enriched for glycogen metabolism and protein groups associated with mature neutrophils (reflecting the expected maturation block in AML), among others. 771 of the 1364 differentially expressed proteins (56.5%) showed only minimal variability in mRNA expression levels (fold change of <1.1 between AML and normal marrow CD34 cell mRNA) that could not explain dysregulated protein expression. Several protein complexes likewise showed coordinated differential expression in the proteomic data, but no change in the transcriptome, including the THO complex (Figure 1E) and the phosphorylase kinase complex (Figure 1F), among others, indicating the presence of posttranscriptional regulation of the levels of many proteins in AML samples. Conclusion: We have created a deep-scale proteomic database from a set of well-characterized AML samples, allowing for a proteogenomic study of AML. We have identified many examples of post-transcriptional regulation of key metabolic pathways that may be relevant for better understanding AML cell metabolism and therapeutic vulnerabilities. Additional studies linking patterns of protein dysregulation with a variety of AML covariates are underway. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 29 (1) ◽  
pp. 372-382 ◽  
Author(s):  
Gregory M James ◽  
Gregor Gryglewski ◽  
Thomas Vanicek ◽  
Neydher Berroterán-Infante ◽  
Cécile Philippe ◽  
...  

Author(s):  
Alexandros Goulas ◽  
Jean-Pierre Changeux ◽  
Konrad Wagstyl ◽  
Katrin Amunts ◽  
Nicola Palomero-Gallagher ◽  
...  

Transmitter receptors constitute a key component of the molecular machinery for inter-cellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distil these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization, and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density), excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density) and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.


2019 ◽  
Vol 30 (2) ◽  
pp. 575-586 ◽  
Author(s):  
Nadine Parker ◽  
Didac Vidal-Pineiro ◽  
Leon French ◽  
Jean Shin ◽  
Hieab H H Adams ◽  
...  

Abstract Exposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4–97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life.


Author(s):  
Sejal Patel ◽  
Derek Howard ◽  
Alana Man ◽  
Deborah Schwartz ◽  
Joelle Jee ◽  
...  

AbstractAlzheimer’s disease (AD) starts decades before clinical symptoms appear. Low glucose utilization in regions of the cerebral cortex marks early AD and is clinically useful. To identify these regions, we conducted a voxel-wise meta-analysis of positron emission tomography studies that compared AD patients with healthy controls. This meta-analysis included 27 studies that assayed glucose utilization in 915 AD patients and 715 healthy controls. The resulting map marks hypometabolism in the posterior cingulate, middle frontal, angular gyrus, middle and inferior temporal regions. Using the Allen Human Brain Atlas, we identified genes with expression patterns associated with this hypometabolism pattern in the cerebral cortex. Of the six brains in the Atlas, one demonstrated a strong spatial association with the hypometabolism pattern. Previous neuropathological assessment of this brain from a 39-year-old male noted a neurofibrillary tangle in the entorhinal cortex. Using the transcriptomic data, we estimate lower proportions of neurons and more microglia in the hypometabolic regions when compared with the other five brains. Within this single brain, signal recognition particle (SRP)-dependent cotranslational protein targeting genes, which primarily encode cytosolic ribosome proteins, are highly expressed in the hypometabolic regions. Analyses of human and mouse data show that expression of these genes progressively increases across AD-associated states of microglial activation. In addition, genes involved in cell killing, chronic inflammation, ubiquitination, tRNA aminoacylation, and vacuole sorting are associated with the hypometabolism map. These genes suggest disruption of the protein life cycle and neuroimmune activation. Taken together, our molecular characterization of cortical hypometabolism reveals a molecular link to AD associated hypometabolism that may be relevant to preclinical stages.


2021 ◽  
Vol 118 (3) ◽  
pp. e2020574118
Author(s):  
Alexandros Goulas ◽  
Jean-Pierre Changeux ◽  
Konrad Wagstyl ◽  
Katrin Amunts ◽  
Nicola Palomero-Gallagher ◽  
...  

Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.


Sign in / Sign up

Export Citation Format

Share Document