scholarly journals Hypersensitivity to uncertainty is key feature of subjective cognitive impairment

2021 ◽  
Author(s):  
Bahaaeddin Attaallah ◽  
Pierre Petitet ◽  
Elista Slavkova ◽  
Vicky Turner ◽  
Youssuf Saleh ◽  
...  

With an increasingly ageing global population, more people are presenting with concerns about their cognitive function, but not all have an underlying neurodegenerative diagnosis. Subjective cognitive impairment (SCI) is a common condition describing self-reported deficits in cognition without objective evidence of cognitive impairment. Many individuals with SCI suffer from depression and anxiety, which have been hypothesised to account for their cognitive complaints. Despite this association between SCI and affective features, the cognitive and brain mechanisms underlying SCI are poorly understood. Here, we show that people with SCI are hypersensitive to uncertainty and that this might be a key mechanism accounting for their affective burden. Twenty-seven individuals with SCI performed an information sampling task, where they could actively gather information prior to decisions. Across different conditions, SCI participants sampled faster and obtained more information than matched controls to resolve uncertainty. Remarkably, despite their "urgent" sampling behaviour, SCI participants were able to maintain their efficiency. Hypersensitivity to uncertainty indexed by this sampling behaviour correlated with the severity of affective burden including depression and anxiety. Analysis of MRI resting functional connectivity revealed that both uncertainty hypersensitivity and affective burden were associated with stronger insular-hippocampal connectivity. These results suggest that altered uncertainty processing is a key mechanism underlying the psycho-cognitive manifestations in SCI and implicate a specific brain network target for future treatment.

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S55-S55
Author(s):  
Rachel A Crockett ◽  
Chun Liang Hsu ◽  
Cindy Barha ◽  
Ging-Yuek Robin Hsiung ◽  
Teresa Liu-Ambrose

Abstract Aerobic training has been shown to be effective at improving cognitive and brain outcomes in older adults with mild subcortical ischemic vascular cognitive impairment (SIVCI). However, uncertainty remains regarding the underlying neurobiological mechanisms by which exercise elicits these improvements in cognition. Increased aberrant functional connectivity of the default mode network has been highlighted as a factor contributing to cognitive decline in older adults with cognitive impairment. Greater connectivity of the DMN at rest is associated with poorer performance on attention-demanding tasks, indicative of a lack of ability to deactivate the network on task. Our previous work on a randomized controlled trial of participants with mild SIVCI, demonstrated that 6-months of thrice weekly aerobic training led to improved global cognitive function, as measured by Alzheimer’s disease Assessment Scale-Cognitive subscale (ADAS-Cog), compared with a health education program. Thus, we conducted secondary analyses to investigate whether these changes in global cognitive function were associated with changes in resting state DMN connectivity. A subsample of 21 participants underwent a resting state functional magnetic resonance imaging (fMRI) scan before and after trial completion. Change in resting state DMN connectivity was found to significantly predict change in ADAS-Cog score (β = -.442, p=.038) after controlling for age, intervention group, and baseline functional capacity (R2=.467, F(4,16)= 3.507, p=.031). These findings suggest that functional connectivity of the DMN may underlie changes in global cognitive function. Furthermore, aerobic exercise is a promising intervention by which to elicit these changes in older adults with mild SIVCI.


2021 ◽  
Vol 13 ◽  
Author(s):  
Dongsheng Zhang ◽  
Yumeng Lei ◽  
Jie Gao ◽  
Fei Qi ◽  
Xuejiao Yan ◽  
...  

Cognitive impairment in type 2 diabetes mellitus (T2DM) is associated with functional and structural abnormalities in the intrinsic brain network. The salience network (SN) is a neurocognitive network that maintains normal cognitive function, but it has received little attention in T2DM. We explored SN changes in patients with T2DM with normal cognitive function (DMCN) and in patients with T2DM with mild cognitive impairment (DMCI). Sixty-five T2DM patients and 31 healthy controls (HCs) underwent a neuropsychological assessment, independent component analysis (ICA), and voxel-based morphometry (VBM) analysis. The ICA extracted the SN for VBM to compare SN functional connectivity (FC) and gray matter (GM) volume (GMV) between groups. A correlation analysis examined the relationship between abnormal FC and GMV and clinical/cognitive variables. Compared with HCs, DMCN patients demonstrated increased FC in the left frontoinsular cortex (FIC), right anterior insula, and putamen, while DMCI patients demonstrated decreased right middle/inferior frontal gyrus FC. Compared with DMCN patients, DMCI patients showed decreased right FIC FC. There was no significant difference in SN GMV in DMCN and DMCI patients compared with HCs. FIC GMV was decreased in the DMCI patients compared with DMCN patients. In addition, right FIC FC and SN GMV positively correlated with Montreal Cognitive Assessment and Mini-Mental State Examination (MMSE) scores. These findings indicate that changes in SN FC, and GMV are complex non-linear processes accompanied by increased cognitive dysfunction in patients with T2DM. The right FIC may be a useful imaging biomarker for supplementary assessment of early cognitive dysfunction in patients with T2DM.


2020 ◽  
Author(s):  
Rosaria Rucco ◽  
Anna Lardone ◽  
marianna Liparoti ◽  
Emahnuel Troisi Lopez ◽  
Rosa De Micco ◽  
...  

Aim The aim of the present study is to investigate the relations between both functional connectivity and brain networks with cognitive decline, in patients with Parkinson′s disease (PD). Introduction PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor disturbances can occur, cognitive impairment being one of the commonest. However, how the large-scale organization of brain activity differs in cognitively impaired patients, as opposed to cognitively preserved ones, remains poorly understood. Methods Starting from source-reconstructed resting-state magnetoencephalography data, we applied the PLM to estimate functional connectivity, globally and between brain areas, in PD patients with and without cognitive impairment (respectively PD-CI and PD-NC), as compared to healthy subjects (HS). Furthermore, using graph analysis, we characterized the alterations in brain network topology and related these, as well as the functional connectivity, to cognitive performance. Results We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl′s gyrus and inferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere, in the gamma band, in PD-CI patients, as compared to PD-NC and HS. With regard to the global topological features, PD-CI patients, as compared to HS and PD-NC patients, showed differences in multi frequencies bands (delta, alpha, gamma) in the Leaf fraction, Tree hierarchy (both higher in PD-CI) and Diameter (lower in PD-CI). Finally, we found statistically significant correlations between the MoCA test and both the Diameter in delta band and the Tree Hierarchy in the alpha band. Conclusion Our work points to specific large-scale rearrangements that occur selectively in cognitively compromised PD patients and correlated to cognitive impairment.


2018 ◽  
Vol 62 (4) ◽  
pp. 1865-1875 ◽  
Author(s):  
Tim Stuckenschneider ◽  
Christopher David Askew ◽  
Stefanie Rüdiger ◽  
Maria Cristina Polidori ◽  
Vera Abeln ◽  
...  

2016 ◽  
Vol 44 (03) ◽  
pp. 489-514 ◽  
Author(s):  
Yujin Jeon ◽  
Binna Kim ◽  
Jieun E. Kim ◽  
Bori R. Kim ◽  
Soonhyun Ban ◽  
...  

This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).


2014 ◽  
Vol 10 ◽  
pp. P402-P402 ◽  
Author(s):  
Sanneke van Rooden ◽  
Mathijs Buijs ◽  
Maarten Versluis ◽  
Andrew Webb ◽  
Wiesje M. van der Flier ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Sheng Hu ◽  
Chunsheng Xu ◽  
Ting Dong ◽  
Hongli Wu ◽  
Yi Wang ◽  
...  

Patients with Wilson’s disease (WD) suffer from prospective memory (PM) impairment, and some of patients develop cognitive impairment. However, very little is known about how brain structure and function changes effect PM in WD. Here, we employed multimodal neuroimaging data acquired from 22 WD patients and 26 healthy controls (HC) who underwent three-dimensional T1-weighted, diffusion tensor imaging (DTI), and resting state functional magnetic resonance imaging (RS-fMRI). We investigated gray matter (GM) volumes with voxel-based morphometry, DTI metrics using the fiber tractography method, and RS-fMRI using the seed-based functional connectivity method. Compared with HC, WD patients showed GM volume reductions in the basal ganglia (BG) and occipital fusiform gyrus, as well as volume increase in the visual association cortex. Moreover, whiter matter (WM) tracks of WD were widely impaired in association and limbic fibers. WM tracks in association fibers are significant related to PM in WD patients. Relative to HC, WD patients showed that the visual association cortex functionally connects to the thalamus and hippocampus, which is associated with global cognitive function in patients with WD. Together, these findings suggested that PM impairment in WD may be modulated by aberrant WM in association fibers, and that GM volume changes in the association cortex has no direct effect on cognitive status, but indirectly affect global cognitive function by its aberrant functional connectivity (FC) in patients with WD. Our findings may provide a new window to further study how WD develops into cognitive impairment, and deepen our understanding of the cognitive status and neuropathology of WD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexander Rokos ◽  
Bratislav Mišić ◽  
Kathleen Berkun ◽  
Catherine Duclos ◽  
Vijay Tarnal ◽  
...  

The temporal trajectories and neural mechanisms of recovery of cognitive function after a major perturbation of consciousness is of both clinical and neuroscientific interest. The purpose of the present study was to investigate network-level changes in functional brain connectivity associated with the recovery and return of six cognitive functions after general anesthesia. High-density electroencephalograms (EEG) were recorded from healthy volunteers undergoing a clinically relevant anesthesia protocol (propofol induction and isoflurane maintenance), and age-matched healthy controls. A battery of cognitive tests (motor praxis, visual object learning test, fractal-2-back, abstract matching, psychomotor vigilance test, digital symbol substitution test) was administered at baseline, upon recovery of consciousness (ROC), and at half-hour intervals up to 3 h following ROC. EEG networks were derived using the strength of functional connectivity measured through the weighted phase lag index (wPLI). A partial least squares (PLS) analysis was conducted to assess changes in these networks: (1) between anesthesia and control groups; (2) during the 3-h recovery from anesthesia; and (3) for each cognitive test during recovery from anesthesia. Networks were maximally perturbed upon ROC but returned to baseline 30–60 min following ROC, despite deficits in cognitive performance that persisted up to 3 h following ROC. Additionally, during recovery from anesthesia, cognitive tests conducted at the same time-point activated distinct and dissociable functional connectivity networks across all frequency bands. The results highlight that the return of cognitive function after anesthetic-induced unconsciousness is task-specific, with unique behavioral and brain network trajectories of recovery.


2019 ◽  
Vol 26 (4) ◽  
pp. 476-488 ◽  
Author(s):  
Alessandro d’Ambrosio ◽  
Paola Valsasina ◽  
Antonio Gallo ◽  
Nicola De Stefano ◽  
Deborah Pareto ◽  
...  

Background: In multiple sclerosis (MS), abnormalities of brain network dynamics and their relevance for cognitive impairment have never been investigated. Objectives: The aim of this study was to assess the dynamic resting state (RS) functional connectivity (FC) on 62 relapsing-remitting MS patients and 65 sex-matched healthy controls enrolled at 7 European sites. Methods: MS patients underwent clinical and cognitive evaluation. Between-group network FC differences were evaluated using a dynamic approach (based on sliding-window correlation analysis) and grouping correlation matrices into recurrent FC states. Results: Dynamic FC analysis revealed, in healthy controls and MS patients, three recurrent FC states: two characterized by strong intra- and inter-network connectivity and one characterized by weak inter-network connectivity (State 3). A total of 23 MS patients were cognitively impaired (CI). Compared to cognitively preserved (CP), CI-MS patients had reduced RS-FC between subcortical and default-mode networks in the low-connectivity State 3 and lower dwell time (i.e. time spent in a given state) in the high-connectivity State 2. CI-MS patients also exhibited a lower number and a less frequent switching between meta-states, as well as a smaller distance traveled through connectivity states. Conclusion: Time-varying RS-FC was markedly less dynamic in CI- versus CP-MS patients, suggesting that slow inter-network connectivity contributes to cognitive dysfunction in MS.


Sign in / Sign up

Export Citation Format

Share Document