scholarly journals Immunogenicity of heterologous BNT162b2 booster in fully vaccinated individuals with CoronaVac against SARS-CoV-2 variants Delta and Omicron: the Dominican Republic Experience

Author(s):  
Eddy Perez-Then ◽  
Carolina Lucas ◽  
Valter Silva Monteiro ◽  
Marija Miric ◽  
Vivian Brache ◽  
...  

The recent emergence of the SARS-CoV-2 Omicron variant is raising concerns because of its increased transmissibility and by its numerous spike mutations with potential to evade neutralizing antibodies elicited by COVID-19 vaccines. The Dominican Republic was among the first countries in recommending the administration of a third dose COVID-19 vaccine to address potential waning immunity and reduced effectiveness against variants. Here, we evaluated the effects of a heterologous BNT162b2 mRNA vaccine booster on the humoral immunity of participants that had received a two-dose regimen of CoronaVac, an inactivated vaccine used globally. We found that heterologous CoronaVac prime followed by BNT162b2 booster regimen induces elevated virus-specific antibody levels and potent neutralization activity against the ancestral virus and Delta variant, resembling the titers obtained after two doses of mRNA vaccines. While neutralization of Omicron was undetectable in participants that had received a two-dose regimen of CoronaVac vaccine, BNT162b2 booster resulted in a 1.4-fold increase in neutralization activity against Omicron, compared to two-dose mRNA vaccine. Despite this increase, neutralizing antibody titers were reduced by 6.3-fold and 2.7-fold for Omicron compared to ancestral and Delta variant, respectively. Surprisingly, previous SARS-CoV-2 infection did not affect the neutralizing titers for Omicron in participants that received the heterologous regimen. Our findings have immediate implications for multiples countries that previously used a two-dose regimen of CoronaVac and reinforce the notion that the Omicron variant is associated with immune escape from vaccines or infection-induced immunity, highlighting the global need for vaccine boosters to combat the impact of emerging variants.

2021 ◽  
Author(s):  
Wei-Shuo Lin ◽  
I-Chen Chen ◽  
Hui-Chen Chen ◽  
Yi-Chien Lee ◽  
Suh-Chin Wu

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired/undesired epitopes, without affecting the antigen overall-folded structure. This study examine the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N-Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N-Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chunyan Yi ◽  
Xiaoyu Sun ◽  
Yixiao Lin ◽  
Chenjian Gu ◽  
Longfei Ding ◽  
...  

Abstract Background The receptor-binding domain (RBD) variants of SARS-CoV-2 could impair antibody-mediated neutralization of the virus by host immunity; thus, prospective surveillance of antibody escape mutants and understanding the evolution of RBD are urgently needed. Methods Using the single B cell cloning technology, we isolated and characterized 93 RBD-specific antibodies from the memory B cells of four COVID-19 convalescent individuals in the early stage of the pandemic. Then, global RBD alanine scanning with a panel of 19 selected neutralizing antibodies (NAbs), including several broadly reactive NAbs, was performed. Furthermore, we assessed the impact of single natural mutation or co-mutations of concern at key positions of RBD on the neutralization escape and ACE2 binding function by recombinant proteins and pseudoviruses. Results Thirty-three amino acid positions within four independent antigenic sites (1 to 4) of RBD were identified as valuable indicators of antigenic changes in the RBD. The comprehensive escape mutation map not only confirms the widely circulating strains carrying important immune escape RBD mutations such as K417N, E484K, and L452R, but also facilitates the discovery of new immune escape-enabling mutations such as F486L, N450K, F490S, and R346S. Of note, these escape mutations could not affect the ACE2 binding affinity of RBD, among which L452R even enhanced binding. Furthermore, we showed that RBD co-mutations K417N, E484K, and N501Y present in B.1.351 appear more resistant to NAbs and human convalescent plasma from the early stage of the pandemic, possibly due to an additive effect. Conversely, double mutations E484Q and L452R present in B.1.617.1 variant show partial antibody evasion with no evidence for an additive effect. Conclusions Our study provides a global view of the determinants for neutralizing antibody recognition, antigenic conservation, and RBD conformation. The in-depth escape maps may have value for prospective surveillance of SARS-CoV-2 immune escape variants. Special attention should be paid to the accumulation of co-mutations at distinct major antigenic sites. Finally, the new broadly reactive NAbs described here represent new potential opportunities for the prevention and treatment of COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Shuo Lin ◽  
I-Chen Chen ◽  
Hui-Chen Chen ◽  
Yi-Chien Lee ◽  
Suh-Chin Wu

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen’s overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010046
Author(s):  
Dieter Mielke ◽  
Gama Bandawe ◽  
Jie Zheng ◽  
Jennifer Jones ◽  
Melissa-Rose Abrahams ◽  
...  

Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.


Author(s):  
Raymond T Suhandynata ◽  
Melissa A Hoffman ◽  
Deli Huang ◽  
Jenny T Tran ◽  
Michael J Kelner ◽  
...  

Background. Currently it is unknown whether a positive serology results correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. Methods. A neutralization assay was validated in a set of PCR confirmed positive specimens and in a negative cohort. 9,530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N=164) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and the levels of neutralizing antibodies detected was correlated. Neutralizing antibody titers (ID50) were also longitudinally monitored in SARS-CoV-2 PCR confirmed patients. Results. The SARS-CoV-2 neutralization assay had a PPA of 96.6% with a SARS-CoV-2 PCR test and a NPA of 98.0% across 100 negative controls. ID50 neutralization titers positively correlated with all three clinical serology platforms. Longitudinal monitoring of hospitalized PCR confirmed COVID-19 patients demonstrates they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2% and 78.4%, respectively. Conclusions. For the first time, we demonstrate that three widely available clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in COVID-19 patients. When a two-platform screen and confirm approach was used for SARS-CoV-2 serology, nearly 80% of two-platform positive specimens had neutralization titers (ID50 >50).


2021 ◽  
Author(s):  
Manukumar Honnayakanahalli Marichannegowda ◽  
Hongshuo Song

The ability of HIV-1 to evade neutralizing antibodies (NAbs) in vivo is well demonstrated, but the impact of NAb escape mutations on HIV-1 phenotype other than immune escape itself has rarely been studied. Here, we show that immune escape mutations selected by V3-glycan specific NAbs in vivo can alter the coreceptor usage repertoire of the transmitted/founder (T/F) HIV-1. In a participant developed V3-glycan NAb response, naturally selected mutations at the V3 N301 and N332 glycan sites abrogated CCR8 usage while conferred APJ usage on the cognate T/F strain. Mutations at the N301 glycan also impaired CCR3 usage and partially compromised the efficiency in using CCR5, which could be fully restored by a single escape mutation at the N332 glycan site. Our study demonstrates the link between NAb escape and coreceptor usage alteration in natural HIV-1 infection and indicates that NAb response could drive virus entry tropism evolution in vivo.


2021 ◽  
Author(s):  
Eloisa Bonfa ◽  
Ana Medeiros-Ribeiro ◽  
Nadia Aikawa ◽  
Carla Saad ◽  
Emily Yuki ◽  
...  

Abstract CoronaVac(SARS-CoV-2 inactivated vaccine) has been largely used as the main immunogen for COVID-19 in several countries. However, its immunogenicity in immunocompromised individuals has not been established. This was a prospective controlled study of 910 adult ARD patients and 182 age- and sex-matched control group(CG) who received two doses of CoronaVac in a 28-days interrval. Anti-SARS-Cov-2 IgG and neutralizing antibodies were assessed at each vaccine shot and 6 weeks after the 2nd dose. Vaccine adverse events(AE) were similar in both groups. We observed significant lower anti-SARS-Cov-2 IgG seroconversion(70.4% vs. 95.5%,p < 0.001) and titers[12.1(95%CI 11.0-13.2) vs. 29.7(95%CI 26.3–33.5),p < 0.001], frequency of neutralizing antibodies(56.3% vs. 79.3%),p < 0.001) and median (interquartile range) neutralization activity [58.7(43.1–77.2) vs. 64.5(48.4–81.4),p = 0.013] in ARD patients compared to CG. A significant decline in the number of COVID-19 cases (p < 0.0001) were observed 10 days after the second dose, with a predominant P1 variant. Safety analysis revealed no moderate/severe AEs. In conclusion, CoronaVac has an excellent safety profile and reasonable rates of quantitative serology(70.4%)/neutralization(56.3%) in ARD patients. The impact of this reduced immunogenicity in vaccine effectiveness warrants further evaluation.


2004 ◽  
Vol 78 (17) ◽  
pp. 9190-9202 ◽  
Author(s):  
J. D. Trujillo ◽  
N. M. Kumpula-McWhirter ◽  
K. J. Hötzel ◽  
M. Gonzalez ◽  
W. P. Cheevers

ABSTRACT This study evaluated type-specific and cross-reactive neutralizing antibodies induced by immunization with modified surface glycoproteins (SU) of the 63 isolate of caprine arthritis-encephalitis lentivirus (CAEV-63). Epitope mapping of sera from CAEV-infected goats localized immunodominant linear epitopes in the carboxy terminus of SU. Two modified SU (SU-M and SU-T) and wild-type CAEV-63 SU (SU-W) were produced in vaccinia virus and utilized to evaluate the effects of glycosylation or the deletion of immunodominant linear epitopes on neutralizing antibody responses induced by immunization. SU-M contained two N-linked glycosylation sites inserted into the target epitopes by R539S and E542N mutations. SU-T was truncated at 518A, upstream from the target epitopes, by introduction of termination codons at 519Y and 521Y. Six yearling Saanen goats were immunized subcutaneously with 30 μg of SU-W, SU-M, or SU-T in Quil A adjuvant and boosted at 3, 7, and 16 weeks. SU antibody titers determined by indirect enzyme-linked immunosorbent assay demonstrated anamnestic responses after each boost. Wild-type and modified SU-induced type-specific CAEV-63 neutralizing antibodies and cross-reactive neutralizing antibodies against CAEV-Co, a virus isolate closely related to CAEV-63, and CAEV-1g5, an isolate geographically distinct from CAEV-63, were determined. Immunization with SU-T resulted in altered recognition of SU linear epitopes and a 2.8- to 4.6-fold decrease in neutralizing antibody titers against CAEV-63, CAEV-Co, and CAEV-1g5 compared to titers of SU-W-immunized goats. In contrast, immunization with SU-M resulted in reduced recognition of glycosylated epitopes and a 2.4- to 2.7-fold increase in neutralizing antibody titers compared to titers of SU-W-immunized goats. Thus, the glycosylation of linear immunodominant nonneutralization epitopes, but not epitope deletion, is an effective strategy to enhance neutralizing antibody responses by immunization.


Author(s):  
Raymond T Suhandynata ◽  
Melissa A Hoffman ◽  
Deli Huang ◽  
Jenny T Tran ◽  
Michael J Kelner ◽  
...  

Abstract Background It is unknown whether a positive serology result correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. Methods A neutralization assay was validated in a set of PCR-confirmed positive specimens and in a negative cohort. In addition, 9530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N = 164 individuals) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and neutralizing activity was determined. Neutralizing antibody titers (50% inhibitory dilution, ID50) were also longitudinally monitored in patients confirmed to have SARS-CoV-2 by PCR. Results The SARS-CoV-2 neutralization assay had a positive percentage agreement (PPA) of 96.6% with a SARS-CoV-2 PCR test and a negative percentage agreement (NPA) of 98.0% across 100 negative control individuals. ID50 neutralization titers positively correlated with all 3 clinical serology platforms. Longitudinal monitoring of hospitalized PCR-confirmed patients with COVID-19 demonstrated they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2 and 78.4%, respectively. Conclusions These 3 clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in patients with COVID-19. All patients confirmed SARS-CoV-2 positive by PCR develop neutralizing antibodies.


2008 ◽  
Vol 82 (7) ◽  
pp. 3751-3768 ◽  
Author(s):  
Mohammed Rafii-El-Idrissi Benhnia ◽  
Megan M. McCausland ◽  
Hua-Poo Su ◽  
Kavita Singh ◽  
Julia Hoffmann ◽  
...  

ABSTRACT The smallpox vaccine is widely considered the gold standard for human vaccines, yet the key antibody targets in humans remain unclear. We endeavored to identify a stereotypic, dominant, mature virion (MV) neutralizing antibody target in humans which could be used as a diagnostic serological marker of protective humoral immunity induced by the smallpox vaccine (vaccinia virus [VACV]). We have instead found that diversity is a defining characteristic of the human antibody response to the smallpox vaccine. We show that H3 is the most immunodominant VACV neutralizing antibody target, as determined by correlation analysis of immunoglobulin G (IgG) specificities to MV neutralizing antibody titers. It was determined that purified human anti-H3 IgG is sufficient for neutralization of VACV; however, depletion or blockade of anti-H3 antibodies revealed no significant reduction in neutralization activity, showing anti-H3 IgG is not required in vaccinated humans (or mice) for neutralization of MV. Comparable results were obtained for human (and mouse) anti-L1 IgG and even for anti-H3 and anti-L1 IgG in combination. In addition to H3 and L1, human antibody responses to D8, A27, D13, and A14 exhibited statistically significant correlations with virus neutralization. Altogether, these data indicate the smallpox vaccine succeeds in generating strong neutralizing antibody responses not by eliciting a stereotypic response to a single key antigen but instead by driving development of neutralizing antibodies to multiple viral proteins, resulting in a “safety net” of highly redundant neutralizing antibody responses, the specificities of which can vary from individual to individual. We propose that this is a fundamental attribute of the smallpox vaccine.


Sign in / Sign up

Export Citation Format

Share Document