scholarly journals Temporal control of the integrated stress response by a stochastic molecular switch

2022 ◽  
Author(s):  
Philipp Klein ◽  
Stefan M. Kallenberger ◽  
Hanna Roth ◽  
Karsten Roth ◽  
Thi Bach Nga Ly-Hartig ◽  
...  

Stress granules (SGs) are formed in the cytosol as an acute response to environmental cues and activation of the integrated stress response (ISR), a central signaling pathway controlling protein synthesis. Using chronic virus infection as stress model, we previously uncovered a unique temporal control of the ISR resulting in recurrent phases of SG assembly and disassembly. Here, we elucidate the molecular network generating this fluctuating stress response, by integrating quantitative experiments with mathematical modeling, and find that the ISR operates as a stochastic switch. Key elements controlling this switch are the cooperative activation of the stress-sensing kinase PKR, the ultrasensitive response of SG formation to the phosphorylation of the translation initiation factor eIF2alpha, and negative feedback via GADD34, a stress-induced subunit of protein phosphatase 1. We identify GADD34 mRNA levels as the molecular memory of the ISR that plays a central role in cell adaptation to acute and chronic stress.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Joseph E Chambers ◽  
Lucy E Dalton ◽  
Hanna J Clarke ◽  
Elke Malzer ◽  
Caia S Dominicus ◽  
...  

Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.


2020 ◽  
Author(s):  
Michael Schoof ◽  
Morgane Boone ◽  
Lan Wang ◽  
Rosalie Lawrence ◽  
Adam Frost ◽  
...  

AbstractThe integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2’s nucleotide exchange factor eIF2B, a two-fold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B’s α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing an allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-EM structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into ‘conjoined tetramers’ with greatly diminished activity. Thus, ISRIB’s effects in disease models could arise from eIF2B decamer stabilization, allosteric modulation, or both.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael Schoof ◽  
Morgane Boone ◽  
Lan Wang ◽  
Rosalie Lawrence ◽  
Adam Frost ◽  
...  

The integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2's nucleotide exchange factor eIF2B, a two-fold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B's α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-EM structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into 'conjoined tetramers' with diminished substrate binding and enzymatic activity. Canonical eIF2-P-driven ISR activation thus arises due to this change in eIF2B's conformational state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Schoof ◽  
Lan Wang ◽  
J. Zachery Cogan ◽  
Rosalie E. Lawrence ◽  
Morgane Boone ◽  
...  

AbstractViral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2’s dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 30 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα mediated by five ‘aromatic fingers’. NSs binding preserves eIF2B activity by maintaining eIF2B’s conformation in its active A-State.


2021 ◽  
Vol 22 (11) ◽  
pp. 5646
Author(s):  
Qing Chun Zhu ◽  
Shumin Li ◽  
Li Xia Yuan ◽  
Rui Ai Chen ◽  
Ding Xiang Liu ◽  
...  

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.


2021 ◽  
Author(s):  
Michael Schoof ◽  
Lan Wang ◽  
J Zachery Cogan ◽  
Rosalie Lawrence ◽  
Morgane Boone ◽  
...  

Viral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2's dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 43 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα; mediated by five 'aromatic fingers'. NSs binding preserves eIF2B activity by maintaining eIF2B's conformation in its active A-State.;


2021 ◽  
Author(s):  
Kazuhiro Kashiwagi ◽  
Yuichi Shichino ◽  
Tatsuya Osaki ◽  
Ayako Sakamoto ◽  
Madoka Nishimoto ◽  
...  

Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotides on unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. Our cryo-electron microscopy (cryo-EM) analysis revealed that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B exhibits normal nucleotide exchange activity even in the presence of eIF2(αP). A genome-wide ribosome profiling analysis clarified that SFSV NSs in human cultured cells attenuates the ISR. Furthermore, SFSV NSs exhibited neuroprotective effects against the ISR-inducing stress. Since the ISR inhibition is beneficial in various neurological disease models, SFSV NSs is promising as a therapeutic ISR inhibitor.


2020 ◽  
Author(s):  
Josephine Ann Mun Yee Choo ◽  
Denise Schlösser ◽  
Valentina Manzini ◽  
Anna Magerhans ◽  
Matthias Dobbelstein

ABSTRACTThe integrated stress response (ISR) allows cells to rapidly shut down most of their protein synthesis in response to protein misfolding, amino acid deficiency, or virus infection. These stresses trigger the phosphorylation of the translation initiation factor eIF2alpha, which prevents the initiation of translation. Here we show that triggering the ISR drastically reduces the progression of DNA replication forks within one hour, thus flanking the shutdown of protein synthesis with immediate inhibition of DNA synthesis. DNA replication is restored by compounds that inhibit eIF2alpha kinases or re-activate eIF2alpha. Mechanistically, the translational shutdown blocks histone synthesis, promoting the formation of DNA:RNA hybrids (R-loops) which interfere with DNA replication. Histone depletion alone induces R-loops and compromises DNA replication. Conversely, histone overexpression or R-loop removal by RNaseH1 each restores DNA replication in the context of ISR and histone depletion. In conclusion, the ISR rapidly stalls DNA synthesis through histone deficiency and R-loop formation. We propose that this shutdown mechanism prevents potentially detrimental DNA replication in the face of cellular stresses.SIGNIFICANCEThe integrated stress response has long been explored regarding its immediate impact on protein synthesis. Translational shutdown represents an indispensable mechanism to prevent the toxicity of misfolded proteins and virus infections. Our results indicate that the shutdown mechanisms reach far beyond translation and immediately interfere with DNA synthesis as well. ISR depletes cells of new histones which induce accumulation of DNA:RNA hybrids. The impairment of DNA replication in this context supports cell survival during stress.Our work provides a link between the ISR and another subject of active research, i. e. the regulatory network of DNA replication forks.Graphical Abstract


2021 ◽  
Author(s):  
Lan Wang ◽  
Morgane Boone ◽  
Rosalie E Lawrence ◽  
Adam Frost ◽  
Peter Walter ◽  
...  

AbstractIn eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Translational control is primarily exerted through a conformational switch in eIF2’s nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2. Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B’s β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed (Schoof et al. 2021) A/I-State model of allosteric ISR regulation.


Sign in / Sign up

Export Citation Format

Share Document