scholarly journals Vaccines Elicit Highly Cross-Reactive Cellular Immunity to the SARS-CoV-2 Omicron Variant

Author(s):  
Jinyan Liu ◽  
Abishek Chandrashekar ◽  
Daniel Sellers ◽  
Julia Barrett ◽  
Michelle Lifton ◽  
...  

The highly mutated SARS-CoV-2 Omicron (B.1.1.529) variant has been shown to evade a substantial fraction of neutralizing antibody responses elicited by current vaccines that encode the WA1/2020 Spike immunogen, resulting in increased breakthrough infections and reduced vaccine efficacy. Cellular immune responses, particularly CD8+ T cell responses, are likely critical for protection against severe SARS-CoV-2 disease. Here we show that cellular immunity induced by current SARS-CoV-2 vaccines is highly cross-reactive against the SARS-CoV-2 Omicron variant. Individuals who received Ad26.COV2.S or BNT162b2 vaccines demonstrated durable CD8+ and CD4+ T cell responses that showed extensive cross-reactivity against both the Delta and Omicron variants, including in central and effector memory cellular subpopulations. Median Omicron-specific CD8+ T cell responses were 82-84% of WA1/2020-specific CD8+ T cell responses. These data suggest that current vaccines may provide considerable protection against severe disease with the SARS-CoV-2 Omicron variant despite the substantial reduction of neutralizing antibody responses.

2017 ◽  
Vol 214 (9) ◽  
pp. 2563-2572 ◽  
Author(s):  
Spencer W. Stonier ◽  
Andrew S. Herbert ◽  
Ana I. Kuehne ◽  
Ariel Sobarzo ◽  
Polina Habibulin ◽  
...  

Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4+ T cell responses but limited CD8+ T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity.


2021 ◽  
Author(s):  
Catherine Riou ◽  
Roanne Keeton ◽  
Thandeka Moyo-Gwete ◽  
Tandile Hermanus ◽  
Prudence Kgagudi ◽  
...  

SARS-CoV-2 variants have emerged that escape neutralization and potentially impact vaccine efficacy. T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is poorly studied. We assessed both neutralizing antibody and T cell responses in 44 South African COVID-19 patients infected either with B.1.351, now dominant in South Africa, or infected prior to its emergence (first wave), to provide an overall measure of immune evasion. We show for the first time that robust spike-specific CD4 and CD8 T cell responses were detectable in B.1.351-infected patients, similar to first wave patients. Using peptides spanning only the B.1.351 mutated regions, we identified CD4 T cell responses targeting the wild type peptides in 12/22 (54.5%) first wave patients, all of whom failed to recognize corresponding B.1.351-mutated peptides (p=0.0005). However, responses to the mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3/44) mounted CD8 responses that targeted the mutated regions. First wave patients showed a 12.7 fold reduction in plasma neutralization of B.1.351. This study shows that despite loss of recognition of immunodominant CD4 epitope(s), overall CD4 and CD8 T cell responses to B.1.351 are preserved. These observations may explain why, despite substantial loss of neutralizing antibody activity against B.1.351, several vaccines have retained the ability to protect against severe COVID-19 disease.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3005-3005 ◽  
Author(s):  
J. D. Wolchok ◽  
H. Gallardo ◽  
M. Perales ◽  
T. Rasalan ◽  
J. Wang ◽  
...  

3005 Background: T-cell and antibody responses to self antigens on cancer are usually constrained by immunologic tolerance and ignorance. We found that DNA vaccines encoding xenogeneic differentiation antigens, such as tyrosinase (TYR), can mediate tumor protection and regression in implantable mouse models and dogs with spontaneously arising melanoma. Based on this, we conducted a trial of DNA vaccines encoding mouse and human TYR in patients with AJCC stage III/IV melanoma. Methods: HLA-A*0201+ melanoma patients were randomized to 2 different schedules: one group received 3 injections of mouse TYR DNA followed by 3 injections of human TYR DNA while the other group received 3 injections of human TYR DNA followed by 3 injections with the mouse gene. The study was conducted a three different dose levels: 100, 500 and 1,500 mcg DNA/injection, administered IM every 3 weeks. A total of 18 patients were treated, 6 at each dose level being randomized to one of the two schedules. Anti-TYR antibodies and CD8+ T cells recognizing the native human tyrosinase369-377 (YMDGTMSQV) peptide were measured at fixed time points. T-cell responses were monitored with MHC tetramer and intracytoplasmic IFN-γ staining assays using 10-day in vitro stimulation. Multiparametric flow cytometry was performed to further define the phenotype of responding cells. Results: Most toxicities were transient grade I injection site reactions. Seven patients had CD8+ T cell responses, defined as a >3 standard deviation increase in baseline reactivity to the TYR peptide in either the tetramer or intracellular IFN-γ assay. There was no relationship between dose level or assigned schedule and occurrence of T-cell response. Phenotypic characterization of responding T cells showed that most were consistent with an effector memory phenotype including the expression of granzyme B and surface expression of CD107a. No antibody responses were observed. At a median of 42 months of follow-up, median survival has not been reached and 6/18 patients have died from melanoma (1 in the group of patients who had a T cell response and 5 in the non-responders). Conclusions: Mouse and human TYR DNA vaccines were safe and induced CD8+ T cell responses in 7/18 patients. T cells recognizing a native TYR peptide had a phenotype consistent with that of effector memory cells. No significant financial relationships to disclose.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Alejandro Marín-López ◽  
Eva Calvo-Pinilla ◽  
Diego Barriales ◽  
Gema Lorenzo ◽  
Alejandro Brun ◽  
...  

ABSTRACTThe development of vaccines against bluetongue, a prevalent livestock disease, has been focused on surface antigens that induce strong neutralizing antibody responses. Because of their antigenic variability, these vaccines are usually serotype restricted. We now show that a single highly conserved nonstructural protein, NS1, expressed in a modified vaccinia Ankara virus (MVA) vector can provide multiserotype protection in IFNAR−/−129 mice against bluetongue virus (BTV) that is largely dependent on CD8 T cell responses. We found that the protective antigenic capacity of NS1 resides within the N terminus of the protein and is provided in the absence of neutralizing antibodies. The protective CD8 T cell response requires the presence of a specific peptide within the N terminus of NS1, since its deletion ablates the efficacy of the vaccine formulation. These data reveal the importance of the nonstructural protein NS1 in CD8 T cell-mediated protection against multiple BTV serotypes when vectorized as a recombinant MVA vaccine.IMPORTANCEConventional vaccines have controlled or limited BTV expansion in the past, but they cannot address the need for cross-protection among serotypes and do not allow distinguishing between infected and vaccinated animals (DIVA strategy). There is a need to develop universal vaccines that induce effective protection against multiple BTV serotypes. In this work we have shown the importance of the nonstructural protein NS1, conserved among all the BTV serotypes, in CD8 T cell-mediated protection against multiple BTV serotypes when vectorized as a recombinant MVA vaccine.


2016 ◽  
Vol 197 (1) ◽  
pp. 168-178 ◽  
Author(s):  
Mélanie Desbois ◽  
Pauline Le Vu ◽  
Clélia Coutzac ◽  
Elie Marcheteau ◽  
Coralie Béal ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4457 ◽  
Author(s):  
Jian Liu ◽  
Dabbu Kumar Jaijyan ◽  
Qiyi Tang ◽  
Hua Zhu

Vaccination has had great success in combating diseases, especially infectious diseases. However, traditional vaccination strategies are ineffective for several life-threatening diseases, including acquired immunodeficiency syndrome (AIDS), tuberculosis, malaria, and cancer. Viral vaccine vectors represent a promising strategy because they can efficiently deliver foreign genes and enhance antigen presentation in vivo. However, several limitations, including pre-existing immunity and packaging capacity, block the application of viral vectors. Cytomegalovirus (CMV) has been demonstrated as a new type of viral vector with additional advantages. CMV could systematically elicit and maintain high frequencies of effector memory T cells through the “memory inflation” mechanism. Studies have shown that CMV can be genetically modified to induce distinct patterns of CD8+ T-cell responses, while some unconventional CD8+ T-cell responses are rarely induced through conventional vaccine strategies. CMV has been used as a vaccine vector to deliver many disease-specific antigens, and the efficacy of these vaccines was tested in different animal models. Promising results demonstrated that the robust and unconventional T-cell responses elicited by the CMV-based vaccine vector are essential to control these diseases. These accumulated data and evidence strongly suggest that a CMV-based vaccine vector represents a promising approach to develop novel prophylactic and therapeutic vaccines against some epidemic pathogens and tumors.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Ling Ye ◽  
Zhiyuan Wen ◽  
Ke Dong ◽  
Lei Pan ◽  
Zhigao Bu ◽  
...  

The immune response induced by immunization with HIV Env DNA and virus-like particle (VLP) vaccines was investigated. Immunization with the HIV Env DNA vaccine induced a strong CD8 T cell response but relatively weak antibody response against the HIV Env whereas immunization with VLPs induced higher levels of antibody responses but little CD8 T cell response. Interestingly, immunization with a mixture the HIV Env DNA and VLP vaccines induced enhanced CD8 T cell and antibody responses. Further, it was observed that the mixing of DNA and VLP vaccines during immunization is necessary for augmenting induction of CD8 T cell responses and such augmentation of CD8 T cell responses was also observed by mixing the HIV Env DNA vaccine with control VLPs. These results show that immunization with a mixture of DNA and VLP vaccines combines advantages of both vaccine platforms for eliciting high levels of both antibody and CD8 T cell responses.


2008 ◽  
Vol 180 (7) ◽  
pp. 5118-5129 ◽  
Author(s):  
Sven Mostböck ◽  
M. E. Christine Lutsiak ◽  
Diane E. Milenic ◽  
Kwamena Baidoo ◽  
Jeffrey Schlom ◽  
...  

2014 ◽  
Vol 82 (7) ◽  
pp. 3045-3057 ◽  
Author(s):  
Sruti Krishna ◽  
Jialong Yang ◽  
Hongxia Wang ◽  
Yurong Qiu ◽  
Xiao-Ping Zhong

ABSTRACTThe serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) integrates various environmental cues such as the presence of antigen, inflammation, and nutrients to regulate T cell growth, metabolism, and function. The tuberous sclerosis 1 (TSC1)/TSC2 complex negatively regulates the activity of an mTOR-containing multiprotein complex called mTOR complex 1. Recent studies have revealed an essential cell-intrinsic role for TSC1 in T cell survival, quiescence, and mitochondrial homeostasis. Given the emerging role of mTOR activity in the regulation of the quantity and quality of CD8 T cell responses, in this study, we examine the role of its suppressor, TSC1, in the regulation of antigen-specific primary and memory CD8 T cell responses to bacterial infection. Using an established model system of transgenic CD8 cell adoptive transfer and challenge withListeria monocytogenesexpressing a cognate antigen, we found that TSC1 deficiency impairs antigen-specific CD8 T cell responses, resulting in weak expansion, exaggerated contraction, and poor memory generation. Poor expansion of TSC1-deficient cells was associated with defects in survival and proliferationin vivo, while enhanced contraction was correlated with an increased ratio of short-lived effectors to memory precursors in the effector cell population. This perturbation of effector-memory differentiation was concomitant with decreased expression of eomesodermin among activated TSC1 knockout cells. Upon competitive adoptive transfer with wild-type counterparts and antigen rechallenge, TSC1-deficient memory cells showed moderate defects in expansion but not cytokine production. Taken together, these findings provide direct evidence of a CD8 T cell-intrinsic role for TSC1 in the regulation of antigen-specific primary and memory responses.


Sign in / Sign up

Export Citation Format

Share Document