scholarly journals Deterministic approximation for population dynamics in the presence of advantageous mutants

2022 ◽  
Author(s):  
Ignacio Rodriguez-Brenes ◽  
Dominik Wodarz ◽  
Natalia Komarova

Spatial stochastic simulations of evolutionary processes are computationally expensive. Here, based on spatially explicit decoupling approximations (SEDA) introduced by us earlier, we derive a deterministic approximation to a spatial stochastic birth-death process in the presence of two types: the less advantageous resident type and a more advantageous mutant. At the core of this technique are two essential steps: (1) a system of ODEs that approximate spatial interactions among neighboring individuals must be solved; (2) the time-variable has to be rescaled with a factor (called "alpha") that depends on the kinetic parameters of the wild type and mutant individuals. An explicit formula for alpha is derived, which is a power law of division and death rates of the two types. The method is relatively fast and provides excellent time-series agreement with the stochastic simulation results for the spatial agent-based model. The methodology can be used to describe hard selective sweep events, including the expansion of driver mutations in carcinogenesis, bacterial evolution, and aspects of resistance dynamics.

Author(s):  
Joshua M. Epstein

This part describes the agent-based and computational model for Agent_Zero and demonstrates its capacity for generative minimalism. It first explains the replicability of the model before offering an interpretation of the model by imagining a guerilla war like Vietnam, Afghanistan, or Iraq, where events transpire on a 2-D population of contiguous yellow patches. Each patch is occupied by a single stationary indigenous agent, which has two possible states: inactive and active. The discussion then turns to Agent_Zero's affective component and an elementary type of bounded rationality, as well as its social component, with particular emphasis on disposition, action, and pseudocode. Computational parables are then presented, including a parable relating to the slaughter of innocents through dispositional contagion. This part also shows how the model can capture three spatially explicit examples in which affect and probability change on different time scales.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


1987 ◽  
Vol 7 (10) ◽  
pp. 3694-3704
Author(s):  
C Prives ◽  
Y Murakami ◽  
F G Kern ◽  
W Folk ◽  
C Basilico ◽  
...  

Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi124-vi124
Author(s):  
Insa Prilop ◽  
Thomas Pinzer ◽  
Daniel Cahill ◽  
Priscilla Brastianos ◽  
Gabriele Schackert ◽  
...  

Abstract OBJECTIVE Multiple meningiomas (MM) are rare and present a unique management challenge. While the mutational landscape of single meningiomas has been extensively studied, understanding the molecular pathogenesis of sporadic MM remains incomplete. The objective of this study is to elucidate the genetic features of sporadic MM. METHODS We identified nine patients with MM (n=19) defined as ≥2 spatially separated synchronous or metachronous meningiomas. We profiled genetic changes in these tumors using next-generation sequencing (NGS) assay that covers a large number of targetable and frequently mutated genes in meningiomas including AKT1, KLF4, NF2, PIK3CA/PIK3R1, POLR2A, SMARCB1, SMO, SUFU, TRAF7, and the TERT promoter. RESULTS Most of MM were WHO grade 1 (n= 16, 84.2%). Within individual patients, no driver mutation was shared between separate tumors. All but two cases harbored different hot spot mutations in known meningioma-driver genes like TRAF7 (n= 5), PIK3CA (n= 4), AKT1 (n= 3), POLR2A (n=1) and SMO (n= 1). Moreover, individual tumors differed in histologic subtype in 8/9 patients. The low frequency of NF2 mutations in our series stands in contrast to previous studies that included hereditary cases arising in the setting of neurofibromatosis type 2 (NF2). CONCLUSIONS Our findings provide evidence for genomic inter-tumor heterogeneity and an independent molecular origin of sporadic NF2 wild-type MM. Furthermore, these findings suggest that genetic characterization of each lesion is warranted in sporadic MM.


1987 ◽  
Vol 1 (4) ◽  
pp. 367-381 ◽  
Author(s):  
Julian Keilson ◽  
Ravi Ramaswamy

The relaxation time for an ergodic Markov process is a measure of the time until ergodicity is reached from its initial state. In this paper the relaxation time for an ergodic truncated birth-death process is studied. It is shown that the relaxation time for such a process on states {0,1, …, N} is the quasi-stationary exit time from the set {,2, …, N{0,1,…, N, N + 1} with two-sided absorption at states 0 and N + 1. The existence of such a dual process has been observed by Siegmund [15] for stochastically monotone Markov processes on the real line. Exit times for birth- death processes with two absorbing states are studied and an efficient algorithm for the numerical evaluation of mean exit times is presented. Simple analytical lower bounds for the relaxation times are obtained. These bounds are numerically accessible. Finally, the sensitivity of the relaxation time to variations in birth and death rates is studied.


1998 ◽  
Vol 18 (5) ◽  
pp. 2677-2687 ◽  
Author(s):  
Woo S. Joo ◽  
Henry Y. Kim ◽  
John D. Purviance ◽  
K. R. Sreekumar ◽  
Peter A. Bullock

ABSTRACT Initiation of simian virus 40 (SV40) DNA replication is dependent upon the assembly of two T-antigen (T-ag) hexamers on the SV40 core origin. To further define the oligomerization mechanism, the pentanucleotide requirements for T-ag assembly were investigated. Here, we demonstrate that individual pentanucleotides support hexamer formation, while particular pairs of pentanucleotides suffice for the assembly of T-ag double hexamers. Related studies demonstrate that T-ag double hexamers formed on “active pairs” of pentanucleotides catalyze a set of previously described structural distortions within the core origin. For the four-pentanucleotide-containing wild-type SV40 core origin, footprinting experiments indicate that T-ag double hexamers prefer to bind to pentanucleotides 1 and 3. Collectively, these experiments demonstrate that only two of the four pentanucleotides in the core origin are necessary for T-ag assembly and the induction of structural changes in the core origin. Since all four pentanucleotides in the wild-type origin are necessary for extensive DNA unwinding, we concluded that the second pair of pentanucleotides is required at a step subsequent to the initial assembly process.


2020 ◽  
Author(s):  
André L. Samson ◽  
Cheree Fitzgibbon ◽  
Komal M. Patel ◽  
Joanne M. Hildebrand ◽  
Lachlan W. Whitehead ◽  
...  

ABSTRACTNecroptosis is a lytic, inflammatory cell death pathway that is dysregulated in many human pathologies. The pathway is executed by a core machinery comprising the RIPK1 and RIPK3 kinases, which assemble into necrosomes in the cytoplasm, and the terminal effector pseudokinase, MLKL. RIPK3-mediated phosphorylation of MLKL induces oligomerization and translocation to the plasma membrane where MLKL accumulates as hotspots and perturbs the lipid bilayer to cause death. The precise choreography of events in the pathway, where they occur within cells, and pathway differences between species, are of immense interest. However, they have been poorly characterized due to a dearth of validated antibodies for microscopy studies. Here, we describe a toolbox of antibodies for immunofluorescent detection of the core necroptosis effectors, RIPK1, RIPK3 and MLKL, and their phosphorylated forms, in human and mouse cells. By comparing reactivity with endogenous proteins in wild-type cells and knockout controls in basal and necroptosis-inducing conditions, we characterise the specificity of frequently-used commercial and recently-developed antibodies for detection of necroptosis signaling events. Importantly, our findings demonstrate that not all frequently-used antibodies are suitable for monitoring necroptosis by immunofluorescence microscopy, and methanol-is preferable to paraformaldehyde-fixation for robust detection of specific RIPK1, RIPK3 and MLKL signals.


2017 ◽  
Author(s):  
Antoine Hocher ◽  
Myriam Ruault ◽  
Petra Kaferle ◽  
Marc Descrimes ◽  
Mickael Garnier ◽  
...  

AbstractThe eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly and man. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at various levels in yeast, and found that Sir3 spreading into Extended Silent Domains (ESD) eventually reached saturation at subtelomeres. We observed that Sir3 spreading into ESDs covered zone associated with specific histone marks in wild-type cells and stopped at zones of histone mark transitions including H3K79 tri-methylation levels. The conserved enzyme Dot1 deposits H3K79 methylation, and we found that it is essential for viability upon overexpression of Sir3, but not of a spreading-defective mutant Sir3A2Q. These data suggest that H3K79 methylation actively blocks Sir3 spreading. Lastly, our meta-analysis uncovers previously uncharacterized discrete subtelomeric domains associated with specific chromatin features offering a new viewpoint on how to separate subtelomeres from the core chromosome.


Sign in / Sign up

Export Citation Format

Share Document