scholarly journals Lack of evidence for functional luteinising hormone chorionic gonadotropin receptors in non-pregnant human endometrial stromal cells

2022 ◽  
Author(s):  
Oliver N Mann ◽  
Chow-Send Kong ◽  
Emma S Lucas ◽  
Jan J Brosens ◽  
Aylin C Hanyaloglu ◽  
...  

The human luteinising hormone chorionic gonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity and identified a small subpopulation of stromal cells with discernible LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.

2003 ◽  
Vol 74 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Knut Biber ◽  
Mike W. Zuurman ◽  
Han Homan ◽  
Hendrikus W. G. M. Boddeke

Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

2010 ◽  
Vol 35 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lina Ji ◽  
Abha Chauhan ◽  
Ved Chauhan

2007 ◽  
Vol 454 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Christian Barmeyer ◽  
Jeff Huaqing Ye ◽  
Shafik Sidani ◽  
John Geibel ◽  
Henry J. Binder ◽  
...  
Keyword(s):  
Hek 293 ◽  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gail A Robertson ◽  
Harinath Sale ◽  
David Tester ◽  
Thomas J O’Hara ◽  
Pallavi Phartiyal ◽  
...  

Cardiac I Kr is a critical repolarizing current in the heart and a target for inherited and acquired long QT syndrome. Biochemical studies show that native I Kr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of I Kr functional properties derives primarily from studies of homo-oligomers of the original hERG 1a isolate. The hERG 1a and 1b subunits are identical except at the amino (NH2) terminus, which in hERG 1b is much shorter and has a unique primary sequence. We compared the biophysical properties of currents produced by hERG 1a and 1a/1b channels expressed in HEK-293 cells at near-physiological temperatures. We found that heteromeric hERG 1a/1b currents are much larger than hERG 1a currents and conduct 80% more charge during an action potential. This surprising difference corresponds to a two-fold increase in the apparent rates of activation and recovery from inactivation, which reduces rectification and facilitates current rebound during repolarization. Kinetic modeling shows these gating differences account quantitatively for the differences in current amplitude between the two channel types. Depending on the action potential model used, loss of 1b predicts an increase in action potential duration of 27 ms (7%) or 41 ms (17%), respectively. Drug sensitivity was also different. Compared to homomeric 1a channels, heteromeric 1a/1b channels were inhibited by E-4031 with a slower time course and a corresponding four-fold positive shift in the IC 50 . Differences in current kinetics and drug sensitivity were modeled by “NH2 mode” gating with conformational states bound by the amino terminus in hERG 1a homomers but not 1a/1b heteromers. The importance of hERG 1b in vivo is supported by the identification of a 1b-specific A8V missense mutation in 1/269 unrelated genotype-negative LQTS patients and absent in 400 control alleles. Mutant 1bA8V expressed alone or with hERG 1a in HEK-293 cells nearly eliminated 1b protein. Thus, mutations specifically disrupting hERG 1b function are expected to reduce cardiac I Kr , prolong QT interval and enhance drug sensitivity, thus representing a potential mechanism underlying inherited or acquired LQTS.


2007 ◽  
Vol 293 (6) ◽  
pp. C1983-C1990 ◽  
Author(s):  
Minho Kang ◽  
Gracious R. Ross ◽  
Hamid I. Akbarali

The carboxyl terminus of the calcium channel plays an important role in the regulation of calcium entry, signal transduction, and gene expression. Potential protein-protein interaction sites within the COOH terminus of the L-type calcium channel include those for the SH3 and SH2 binding domains of c-Src kinase that regulates calcium currents in smooth muscle. In this study, we examined the binding sites involved in Src kinase-mediated phosphorylation of the human voltage-gated calcium channel (Cav) 1.2b (hCav1.2b) and the effect of nitrotyrosylation. Cotransfection of human embryonic kidney (HEK)-293 cells with hCav1.2b and c-Src resulted in tyrosine phosphorylation of the calcium channel, which was prevented by nitration of tyrosine residues by peroxynitrite. Whole cell calcium currents were reduced by 58 + 5% by the Src kinase inhibitor PP2 and 64 + 6% by peroxynitrite. Nitrotyrosylation prevented Src-mediated regulation of the currents. Glutathione S-transferase fusion protein of the distal COOH terminus of hCav1.2b (1809-2138) bound to SH2 domain of Src following tyrosine phosphorylation, while binding to SH3 required the presence of the proline-rich motif. Site-directed mutation of Y2134 prevented SH2 binding and resulted in reduced phosphorylation of hCav1.2b. Within the distal COOH terminus, single, double, or triple mutations of Y1837, Y1861, and Y2134 were constructed and expressed in HEK-293 cells. The inhibitory effects of PP2 and peroxynitrite on calcium currents were significantly reduced in the double mutant Y1837-2134F. These data demonstrate that the COOH terminus of hCav1.2b contains sites for the SH2 and SH3 binding of Src kinase. Nitrotyrosylation of these sites prevents Src kinase regulation and may be importantly involved in calcium influx regulation during inflammation.


Sign in / Sign up

Export Citation Format

Share Document