scholarly journals The biosynthetic-secretory pathway, supplemented by recycling routes, specifies epithelial membrane polarity

2022 ◽  
Author(s):  
Nan Zhang ◽  
Hongjie Zhang ◽  
Liakot A Khan ◽  
Gholamali Jafari ◽  
Yong Eun ◽  
...  

In prevailing epithelial polarity models, membrane-based polarity cues (e.g., the partitioning-defective PARs) position apicobasal cellular membrane domains. Intracellular vesicular trafficking expands these domains by sorting apicobasal cargo towards them. How the polarity cues are polarized and how sorting confers long-range vesicle directionality is still unclear. Here, a systems-based approach using two-tiered C. elegans genomics-genetics screens identifies trafficking molecules that are not implicated in apical sorting yet polarize apical membrane and PAR complex components. Live tracking of polarized membrane biogenesis suggests that the biosynthetic-secretory pathway, linked to recycling routes, is asymmetrically oriented towards the apical domain during its biosynthesis, upstream of PARs and independent of polarized target domains. This mode of membrane polarization could offer solutions to questions of current models of polarity and polarized trafficking.

2020 ◽  
Vol 14 (1) ◽  
pp. 34-47
Author(s):  
Hironori Tsuchiya ◽  
Maki Mizogami

Introduction: Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods: Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results: The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion: Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.


2018 ◽  
Author(s):  
Brennan S. Dirk ◽  
Christopher End ◽  
Emily N. Pawlak ◽  
Logan R. Van Nynatten ◽  
Rajesh Abraham Jacob ◽  
...  

ABSTRACTThe regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein – 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.


2007 ◽  
Vol 18 (4) ◽  
pp. 1153-1166 ◽  
Author(s):  
Tamar Gattegno ◽  
Aditya Mittal ◽  
Clari Valansi ◽  
Ken C.Q. Nguyen ◽  
David H. Hall ◽  
...  

Developmental cell fusion is found in germlines, muscles, bones, placentae, and stem cells. In Caenorhabditis elegans 300 somatic cells fuse during development. Although there is extensive information on the early intermediates of viral-induced and intracellular membrane fusion, little is known about late stages in membrane fusion. To dissect the pathway of cell fusion in C. elegans embryos, we use genetic and kinetic analyses using live-confocal and electron microscopy. We simultaneously monitor the rates of multiple cell fusions in developing embryos and find kinetically distinct stages of initiation and completion of membrane fusion in the epidermis. The stages of cell fusion are differentially blocked or retarded in eff-1 and idf-1 mutants. We generate kinetic cell fusion maps for embryos grown at different temperatures. Different sides of the same cell differ in their fusogenicity: the left and right membrane domains are fusion-incompetent, whereas the anterior and posterior membrane domains fuse with autonomous kinetics in embryos. All but one cell pair can initiate the formation of the largest syncytium. The first cell fusion does not trigger a wave of orderly fusions in either direction. Ultrastructural studies show that epidermal syncytiogenesis require eff-1 activities to initiate and expand membrane merger.


2000 ◽  
Vol 10 (18) ◽  
pp. 1098-1107 ◽  
Author(s):  
Grégoire Michaux ◽  
Anne Gansmuller ◽  
Colette Hindelang ◽  
Michel Labouesse

2009 ◽  
Vol 296 (3) ◽  
pp. F459-F469 ◽  
Author(s):  
Olga Vagin ◽  
Jeffrey A. Kraut ◽  
George Sachs

Polarized distribution of plasma membrane transporters and receptors in epithelia is essential for vectorial functions of epithelia. This polarity is maintained by sorting of membrane proteins into apical or basolateral transport containers in the trans-Golgi network and/or endosomes followed by their delivery to the appropriate plasma membrane domains. Sorting depends on the recognition of sorting signals in proteins by specific sorting machinery. In the present review, we summarize experimental evidence for and against the hypothesis that N-glycans attached to the membrane proteins can act as apical sorting signals. Furthermore, we discuss the roles of N-glycans in the apical sorting event per se and their contribution to folding and quality control of glycoproteins in the endoplasmic reticulum or retention of glycoproteins in the plasma membrane. Finally, we review existing hypotheses on the mechanism of apical sorting and discuss the potential roles of the lectins, VIP36 and galectin-3, as putative apical sorting receptors.


2006 ◽  
Vol 86 (2) ◽  
pp. 669-707 ◽  
Author(s):  
Olivier Staub ◽  
Daniela Rotin

Ubiquitylation of membrane proteins has gained considerable interest in recent years. It has been recognized as a signal that negatively regulates the cell surface expression of many plasma membrane proteins both in yeast and in mammalian cells. Moreover, it is also involved in endoplasmic reticulum-associated degradation of membrane proteins, and it acts as a sorting signal both in the secretory pathway and in endosomes, where it targets proteins into multivesicular bodies in the lumen of vacuoles/lysosomes. In this review we discuss the progress in understanding these processes, achieved during the past several years.


2003 ◽  
Vol 161 (6) ◽  
pp. 1117-1131 ◽  
Author(s):  
Kyohei Umebayashi ◽  
Akihiko Nakano

It was known that the uptake of tryptophan is reduced in the yeast erg6 mutant, which is defective in a late step of ergosterol biosynthesis. Here, we show that this is because the high affinity tryptophan permease Tat2p is not targeted to the plasma membrane. In wild-type cells, the plasma membrane localization of Tat2p is regulated by the external tryptophan concentration. Tat2p is transported from the Golgi apparatus to the vacuole at high tryptophan, and to the plasma membrane at low tryptophan. However, in the erg6 mutant, Tat2p is missorted to the vacuole at low tryptophan. The plasma membrane targeting of Tat2p is dependent on detergent-insoluble membrane domains, suggesting that sterol affects the sorting through the organization of lipid rafts. The erg6 mutation also caused missorting to the multivesicular body pathway in late endosomes. Thus, sterol composition is crucial for protein sorting late in the secretory pathway. Tat2p is subject to polyubiquitination, which acts as a vacuolar-targeting signal, and the inhibition of this process suppresses the Tat2p sorting defects of the erg6 mutant. The sorting mechanisms of Tat2p that depend on both sterol and ubiquitin will be discussed.


2000 ◽  
Vol 31 (4) ◽  
pp. S157-S159 ◽  
Author(s):  
Patricia Juárez ◽  
Rosana Sánchez-López ◽  
Marco A Ramos ◽  
Roberto P Stock ◽  
Alejandro Alagón

2020 ◽  
Author(s):  
Alexander T. Lin-Moore ◽  
Motunrayo J. Oyeyemi ◽  
Marc Hammarlund

ABSTRACTInjured axons must regenerate to restore nervous system function, and regeneration is regulated in part by external factors from non-neuronal tissues. Many of these extrinsic factors act in the immediate cellular environment of the axon to promote or restrict regeneration, but the existence of long-distance signals regulating axon regeneration has not been clear. Here we show that the Rab GTPase rab-27 inhibits regeneration of GABAergic motor neurons in C. elegans through activity in the intestine. Re-expression of RAB-27, but not the closely related RAB-3, in the intestine of rab-27 mutant animals is sufficient to rescue normal regeneration. Several additional components of an intestinal neuropeptide secretion pathway also inhibit axon regeneration, including NPDC1/cab-1, SNAP25/aex-4, and KPC3/aex-5. Together these data indicate that RAB-27-dependent neuropeptide secretion from the intestine inhibits axon regeneration, and point to distal tissues as potent extrinsic regulators of regeneration.


2021 ◽  
Vol 118 (35) ◽  
pp. e2101287118
Author(s):  
Yan Huang ◽  
Haidi Yin ◽  
Baiying Li ◽  
Qian Wu ◽  
Yang Liu ◽  
...  

The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.


Sign in / Sign up

Export Citation Format

Share Document