scholarly journals Multi-micron crisscross structures from combinatorially assembled DNA-origami slats

2022 ◽  
Author(s):  
Christopher M Wintersinger ◽  
Dionis Minev ◽  
Anastasia Ershova ◽  
Hiroshi Sasaki ◽  
Gokul Gowri ◽  
...  

Living systems achieve robust self-assembly across length scales. Meanwhile, nanofabrication strategies such as DNA origami have enabled robust self-assembly of submicron-scale shapes.However, erroneous and missing linkages restrict the number of unique origami that can be practically combined into a single supershape. We introduce crisscross polymerization of DNA-origami slats for strictly seed-dependent growth of custom multi-micron shapes with user-defined nanoscale surface patterning. Using a library of ~2000 strands that can be combinatorially assembled to yield any of ~1e48 distinct DNA origami slats, we realize five-gigadalton structures composed of >1000 uniquely addressable slats, and periodic structures incorporating >10,000 slats. Thus crisscross growth provides a generalizable route for prototyping and scalable production of devices integrating thousands of unique components that each are sophisticated and molecularly precise.

2008 ◽  
Vol 130 (33) ◽  
pp. 11164-11169 ◽  
Author(s):  
Madhuri S. Vinchurkar ◽  
Daniel A. Bricarello ◽  
Jens O. Lagerstedt ◽  
James P. Buban ◽  
Henning Stahlberg ◽  
...  

2021 ◽  
Author(s):  
Joshua A. Johnson ◽  
Vasiliki Kolliopoulos ◽  
Carlos E. Castro

We demonstrate co-self-assembly of two distinct DNA origami structures with a common scaffold strand through programmable bifurcation of folding pathways.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1412
Author(s):  
Eunkyung Ji ◽  
Cian Cummins ◽  
Guillaume Fleury

The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.


2009 ◽  
Vol 5 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Hareem T. Maune ◽  
Si-ping Han ◽  
Robert D. Barish ◽  
Marc Bockrath ◽  
William A. Goddard III ◽  
...  

2015 ◽  
Vol 143 (16) ◽  
pp. 165102 ◽  
Author(s):  
Frits Dannenberg ◽  
Katherine E. Dunn ◽  
Jonathan Bath ◽  
Marta Kwiatkowska ◽  
Andrew J. Turberfield ◽  
...  

Langmuir ◽  
2018 ◽  
Vol 34 (18) ◽  
pp. 5323-5333 ◽  
Author(s):  
Lijun T. Raju ◽  
Shubhankar Chakraborty ◽  
Binita Pathak ◽  
Saptarshi Basu

Author(s):  
Martin Nilsson ◽  
Steen Rasmussen

Realistic molecular dynamics and self-assembly is represented in a lattice simulation where water, water-hydrocarbons, and water-amphiphilic systems are investigated. The details of the phase separation dynamics and the constructive self-assembly dynamics are discussed and compared to the corresponding experimental systems. The method used to represent the different molecular types can easily be expended to include additional molecules and thus allow the assembly of more complex structures. This molecular dynamics (MD) lattice gas fills a modeling gap between traditional MD and lattice gas methods. Both molecular objects and force fields are represented by propagating information particles and all microscopic interactions are reversible. Living systems, perhaps the ultimate constructive dynamical systems, is the motivation for this work and our focus is a study of the dynamics of molecular self-assembly and self-organization. In living systems, matter is organized such that it spontaneously constructs intricate functionalities at all levels from the molecules up to the organism and beyond. At the lower levels of description, chemical reactions, molecular selfassembly and self-organization are the drivers of this complexity. We shall, in this chapter, demonstrate how molecular self-assembly and selforganization processes can be represented in formal systems. The formal systems are to be denned as a special kind of lattice gas and they are in a form where an obvious correspondence exists between the observables in the lattice gases and the experimentally observed properties in the molecular self-assembly systems. This has the clear advantage that by using these formal systems, theory, simulation, and experiment can be conducted in concert and can mutually support each other. However, a disadvantage also exists because analytical results are difficult to obtain for these formal systems due to their inherent complexity dictated by their necessary realism. The key to novelt simpler molecules (from lower levels), dynamical hierarchies are formed [2, 3]. Dynamical hierarchies are characterized by distinct observable functionalities at multiple levels of description. Since these higher-order structures are generated spontaneously due to the physico-chemical properties of their building blocks, complexity can come for free in molecular self-assembly systems. Through such processes, matter apparently can program itself into structures that constitute living systems [11, 27, 30].


Nano Research ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3142-3150 ◽  
Author(s):  
Yang Xin ◽  
Salvador Martinez Rivadeneira ◽  
Guido Grundmeier ◽  
Mario Castro ◽  
Adrian Keller

Abstract The surface-assisted hierarchical self-assembly of DNA origami lattices represents a versatile and straightforward method for the organization of functional nanoscale objects such as proteins and nanoparticles. Here, we demonstrate that controlling the binding and exchange of different monovalent and divalent cation species at the DNA-mica interface enables the self-assembly of highly ordered DNA origami lattices on mica surfaces. The development of lattice quality and order is quantified by a detailed topological analysis of high-speed atomic force microscopy (HS-AFM) images. We find that lattice formation and quality strongly depend on the monovalent cation species. Na+ is more effective than Li+ and K+ in facilitating the assembly of high-quality DNA origami lattices, because it is replacing the divalent cations at their binding sites in the DNA backbone more efficiently. With regard to divalent cations, Ca2+ can be displaced more easily from the backbone phosphates than Mg2+ and is thus superior in guiding lattice assembly. By independently adjusting incubation time, DNA origami concentration, and cation species, we thus obtain a highly ordered DNA origami lattice with an unprecedented normalized correlation length of 8.2. Beyond the correlation length, we use computer vision algorithms to compute the time course of different topological observables that, overall, demonstrate that replacing MgCl2 by CaCl2 enables the synthesis of DNA origami lattices with drastically increased lattice order.


2015 ◽  
Author(s):  
Yoon Jo Hwang ◽  
Shelley F. J. Wickham ◽  
Steven D. Perrault ◽  
Sanghyun Yoo ◽  
Sung Ha Park ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document