SH3Ps recruit auxilin-like vesicle uncoating factors into clathrin-mediated endocytosis

2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Madhumitha Narasimhan ◽  
Jiří Friml

Clathrin-mediated endocytosis (CME) is an essential process of cellular cargo uptake operating in all eukaryotes. In animal and yeast, CME involves BAR-SH3 domain proteins, endophilins and amphiphysins, which function at the conclusion of CME to recruit factors for vesicle scission and uncoating. Arabidopsis thaliana contains BAR-SH3 domain proteins SH3P1-3, but their role is poorly understood. We identify SH3P1-3 as functional homologues of endophilin/amphiphysin. SH3P1-3 bind to discrete foci at the plasma membrane (PM), and colocalization indicates late recruitment of SH3P2 to a subset of clathrin-coated pits. PM recruitment pattern of SH3P2 is nearly identical to its interactor, a putative vesicle uncoating factor AUXILIN-LIKE1, and SH3P1-3 are required for most of AUXILIN-LIKE1 PM binding. This indicates a plant-specific modification of CME, where BAR-SH3 proteins recruit auxilin-like uncoating factors, rather than the uncoating phosphatases synaptojanins. Furthermore, we identify an unexpected redundancy between SH3P1-3 and a plant-specific endocytic adaptor, TPLATE complex, showing a contribution of SH3P1-3 to gross CME.

2001 ◽  
Vol 152 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Elaine Hill ◽  
Jeroen van der Kaay ◽  
C. Peter Downes ◽  
Elizabeth Smythe

Plasma membrane clathrin-coated vesicles form after the directed assembly of clathrin and the adaptor complex, AP2, from the cytosol onto the membrane. In addition to these structural components, several other proteins have been implicated in clathrin-coated vesicle formation. These include the large molecular weight GTPase, dynamin, and several Src homology 3 (SH3) domain–containing proteins which bind to dynamin via interactions with its COOH-terminal proline/arginine-rich domain (PRD). To understand the mechanism of coated vesicle formation, it is essential to determine the hierarchy by which individual components are targeted to and act in coated pit assembly, invagination, and scission. To address the role of dynamin and its binding partners in the early stages of endocytosis, we have used well-established in vitro assays for the late stages of coated pit invagination and coated vesicle scission. Dynamin has previously been shown to have a role in scission of coated vesicles. We show that dynamin is also required for the late stages of invagination of clathrin-coated pits. Furthermore, dynamin must bind and hydrolyze GTP for its role in sequestering ligand into deeply invaginated coated pits. We also demonstrate that the SH3 domain of endophilin, which binds both synaptojanin and dynamin, inhibits both late stages of invagination and also scission in vitro. This inhibition results from a reduction in phosphoinositide 4,5-bisphosphate levels which causes dissociation of AP2, clathrin, and dynamin from the plasma membrane. The dramatic effects of the SH3 domain of endophilin led us to propose a model for the temporal order of addition of endophilin and its binding partner synaptojanin in the coated vesicle cycle.


Author(s):  
L. M. Marshall

A human erythroleukemic cell line, metabolically blocked in a late stage of erythropoiesis, becomes capable of differentiation along the normal pathway when grown in the presence of hemin. This process is characterized by hemoglobin synthesis followed by rearrangement of the plasma membrane proteins and culminates in asymmetrical cytokinesis in the absence of nuclear division. A reticulocyte-like cell buds from the nucleus-containing parent cell after erythrocyte specific membrane proteins have been sequestered into its membrane. In this process the parent cell faces two obstacles. First, to organize its erythrocyte specific proteins at one pole of the cell for inclusion in the reticulocyte; second, to reduce or abolish membrane protein turnover since hemoglobin is virtually the only protein being synthesized at this stage. A means of achieving redistribution and cessation of turnover could involve movement of membrane proteins by a directional lipid flow. Generation of a lipid flow towards one pole and accumulation of erythrocyte-specific membrane proteins could be achieved by clathrin coated pits which are implicated in membrane endocytosis, intracellular transport and turnover. In non-differentiating cells, membrane proteins are turned over and are random in surface distribution. If, however, the erythrocyte specific proteins in differentiating cells were excluded from endocytosing coated pits, not only would their turnover cease, but they would also tend to drift towards and collect at the site of endocytosis. This hypothesis requires that different protein species are endocytosed by the coated vesicles in non-differentiating than by differentiating cells.


2015 ◽  
Vol 57 ◽  
pp. 189-201 ◽  
Author(s):  
Jay Shankar ◽  
Cecile Boscher ◽  
Ivan R. Nabi

Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Marciel Pereira Mendes ◽  
Richard Hickman ◽  
Marcel C. Van Verk ◽  
Nicole M. Nieuwendijk ◽  
Anja Reinstädler ◽  
...  

Abstract Main conclusion Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Abstract Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.


1990 ◽  
Vol 265 (23) ◽  
pp. 13601-13608
Author(s):  
J.F. Harper ◽  
L. Manney ◽  
N.D. DeWitt ◽  
M.H. Yoo ◽  
M.R. Sussman

1999 ◽  
Vol 112 (9) ◽  
pp. 1303-1311 ◽  
Author(s):  
A. Benmerah ◽  
M. Bayrou ◽  
N. Cerf-Bensussan ◽  
A. Dautry-Varsat

Recent data have shown that Eps15, a newly identified component of clathrin-coated pits constitutively associated with the AP-2 complex, is required for receptor-mediated endocytosis. However, its precise function remains unknown. Interestingly, Eps15 contains three EH (Eps15-Homology) domains also found in proteins required for the internalization step of endocytosis in yeast. Results presented here show that EH domains are required for correct coated pit targeting of Eps15. Furthermore, when cells expressed an Eps15 mutant lacking EH domains, the plasma membrane punctate distribution of both AP-2 and clathrin was lost, implying the absence of coated pits. This was further confirmed by the fact that dynamin, a GTPase found in coated pits, was homogeneously redistributed on the plasma membrane and that endocytosis of transferrin, a specific marker of clathrin-dependent endocytosis, was strongly inhibited. Altogether, these results strongly suggest a role for Eps15 in coated pit assembly and more precisely a role for Eps15 in the docking of AP-2 onto the plasma membrane. This hypothesis is supported by the fact that a GFP fusion protein encoding the ear domain of (alpha)-adaptin, the AP-2 binding site for Eps15, was efficiently targeted to plasma membrane coated pits.


1982 ◽  
Vol 94 (3) ◽  
pp. 613-623 ◽  
Author(s):  
J Aggeler ◽  
Z Werb

The initial events during phagocytosis of latex beads by mouse peritoneal macrophages were visualized by high-resolution electron microscopy of platinum replicas of freeze-dried cells and by conventional thin-section electron microscopy of macrophages postfixed with 1% tannic acid. On the external surface of phagocytosing macrophages, all stages of particle uptake were seen, from early attachment to complete engulfment. Wherever the plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were broken open and the plasma membrane was viewed from the inside, many nascent phagosomes had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However, up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes, and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them. Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of phagocytosing and control macrophages, but large flat clathrin patches similar to those on nascent phagosomes were observed only on the attached basal plasma membrane surfaces. These resulted suggest that phagocytosis shares features not only with cell attachment and spreading but also with receptor-mediated pinocytosis.


Sign in / Sign up

Export Citation Format

Share Document