scholarly journals Microstructural Impairments in a Topologically Distinct Prefrontal-Habenular Connection in Cocaine Addiction

2022 ◽  
Author(s):  
Sarah G King ◽  
Pierre-Olivier Gaudreault ◽  
Pias Malaker ◽  
Joo-won Kim ◽  
Nelly Alia-Klein ◽  
...  

Drug addiction is characterized by neuroadaptations in mesocorticolimbic networks regulating reward and inhibitory control. The habenula (Hb) is central to adaptive reward and aversion-driven behaviors, serving as a hub connecting emotion/cognitive processing regions including the prefrontal cortex (PFC). However, its role in human drug addiction has not been fully explored. Using diffusion tractography, we detailed PFC structural connectivity with three regions, namely the Hb, ventral tegmental area (VTA), and anterior thalamus (AT), and quantified the tract-specific microstructural integrity using diffusion tensor imaging within the anterior limb of the internal capsule (ALIC) in healthy and cocaine-addicted individuals. White matter microstructure in cocaine-addicted individuals was uniquely impaired in PFC-Hb projections in the ALIC, distinguishable from adjacent PFC-VTA and PFC-AT projections, with more pronounced abnormalities in short-term abstinence. These findings extend preclinical evidence of PFC-Hb circuit impairments in addiction and contextualize the plausible existence of a similar PFC-Hb connection in the human brain.

2020 ◽  
Author(s):  
Gianluca Coppola ◽  
Antonio Di Renzo ◽  
Emanuele Tinelli ◽  
Barbara Petolicchio ◽  
Cherubino Di Lorenzo ◽  
...  

Abstract Background: We investigated intracerebral fiber bundles using a tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) datato investigate microstructural integrity in patients with episodic (MO) and chronic migraine (CM).Methods: We performed DTI in 19 patients with MO within interictal periods, 18 patients with CM without any history of drug abuse, and 18 healthy controls (HCs) using a 3T magnetic resonance imaging scanner. We calculated diffusion metrics, including fractional anisotropy (FA), axial diffusion (AD), radial diffusion (RD), and mean diffusion (MD).Results: TBSS revealed no significant differences in the FA, MD, RD, and AD maps between the MO and HC groups. In comparison to the HC group, theCM group exhibited widespread increased RD (bilateral superior [SCR] and posterior corona radiata [PCR], bilateral genu of the corpus callosum [CC], bilateral posterior limb of internal capsule [IC], bilateral superior longitudinal fasciculus [LF]) and MD values (tracts of the right SCR and PCR, right superior LF, and right splenium of the CC). In comparison to theMO group, theCM group showed decreased FA (bilateral SCR and PCR, bilateral body of CC, right superior LF, right forceps minor) and increased MD values (bilateral SCR and right PCR, right body of CC, right superior LF, right splenium of CC, and right posterior limb of IC). Conclusion: Our results suggest that chronic migraine can be associated withthe widespread disruption of normal white matter integrity in the brain.


2016 ◽  
Vol 22 (2) ◽  
pp. 191-204 ◽  
Author(s):  
Martina Ly ◽  
Nagesh Adluru ◽  
Daniel J. Destiche ◽  
Sharon Y. Lu ◽  
Jennifer M. Oh ◽  
...  

AbstractObjectives: The purpose of this study was to assess whether age-related differences in white matter microstructure are associated with altered task-related connectivity during episodic recognition. Methods: Using functional magnetic resonance imaging and diffusion tensor imaging from 282 cognitively healthy middle-to-late aged adults enrolled in the Wisconsin Registry for Alzheimer’s Prevention, we investigated whether fractional anisotropy (FA) within white matter regions known to decline with age was associated with task-related connectivity within the recognition network. Results: There was a positive relationship between fornix FA and memory performance, both of which negatively correlated with age. Psychophysiological interaction analyses revealed that higher fornix FA was associated with increased task-related connectivity amongst the hippocampus, caudate, precuneus, middle occipital gyrus, and middle frontal gyrus. In addition, better task performance was associated with increased task-related connectivity between the posterior cingulate gyrus, middle frontal gyrus, cuneus, and hippocampus. Conclusions: The findings indicate that age has a negative effect on white matter microstructure, which in turn has a negative impact on memory performance. However, fornix microstructure did not significantly mediate the effect of age on performance. Of interest, dynamic functional connectivity was associated with better memory performance. The results of the psychophysiological interaction analysis further revealed that alterations in fornix microstructure explain–at least in part–connectivity among cortical regions in the recognition memory network. Our results may further elucidate the relationship between structural connectivity, neural function, and cognition. (JINS, 2016, 22, 191–204)


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jibiao Zhang ◽  
Junling Gao ◽  
Huqing Shi ◽  
Bingsheng Huang ◽  
Xiang Wang ◽  
...  

Conduct disorder (CD) is one of the most common behavior disorders in adolescents, such as impulsivity, aggression, and running from school. Males are more likely to develop CD than females, and two previous diffusion tensor imaging (DTI) studies have demonstrated abnormal microstructural integrity in the uncinate fasciculus (UF) in boys with CD compared to a healthy control group. However, little is known about changes in the UF in females with CD. In this study, the UF was illustrated by tractography; then, the fractional anisotropy (FA), axial diffusivity, mean diffusion, radial diffusivity (RD), and the length and number of the UF fiber bundles were compared between male and female patients with CD and between female patients with CD and female healthy controls, as well as between males with CD and healthy males. We found that males with CD showed significantly higher FA of the bilateral UF and significantly lower RD of the left UF when comparing with females with CD. Meanwhile, significantly higher FA and lower RD of the bilateral UF were also found in boys with CD relative to the male healthy controls. Our results replicated previous reports that the microstructural integrity of the UF was abnormal in boys with CD. Additionally, our results demonstrated significant gender effects on the UF of patients with CD, which may indicate why boys have higher rates of conduct problems than girls.


2020 ◽  
Author(s):  
Gianluca Coppola ◽  
Antonio Di Renzo ◽  
Emanuele Tinelli ◽  
Barbara Petolicchio ◽  
Cherubino Di Lorenzo ◽  
...  

Abstract Background: We investigated intracerebral fiber bundles using a tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) data to investigate microstructural integrity in patients with episodic (MO) and chronic migraine (CM).Methods: We performed DTI in 19 patients with MO within interictal periods, 18 patients with CM without any history of drug abuse, and 18 healthy controls (HCs) using a 3T magnetic resonance imaging scanner. We calculated diffusion metrics, including fractional anisotropy (FA), axial diffusion (AD), radial diffusion (RD), and mean diffusion (MD).Results: TBSS revealed no significant differences in the FA, MD, RD, and AD maps between the MO and HC groups. In comparison to the HC group, the CM group exhibited widespread increased RD (bilateral superior [SCR] and posterior corona radiata [PCR], bilateral genu of the corpus callosum [CC], bilateral posterior limb of internal capsule [IC], bilateral superior longitudinal fasciculus [LF]) and MD values (tracts of the right SCR and PCR, right superior LF, and right splenium of the CC). In comparison to the MO group, the CM group showed decreased FA (bilateral SCR and PCR, bilateral body of CC, right superior LF, right forceps minor) and increased MD values (bilateral SCR and right PCR, right body of CC, right superior LF, right splenium of CC, and right posterior limb of IC). Conclusion: Our results suggest that chronic migraine can be associated with the widespread disruption of normal white matter integrity in the brain.


2016 ◽  
Vol 46 (13) ◽  
pp. 2771-2783 ◽  
Author(s):  
C. Wang ◽  
F. Ji ◽  
Z. Hong ◽  
J. S. Poh ◽  
R. Krishnan ◽  
...  

BackgroundSalience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression.MethodWe examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis.ResultsARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years.ConclusionsOur findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.


2009 ◽  
Vol 194 (3) ◽  
pp. 236-242 ◽  
Author(s):  
Richard Kanaan ◽  
Gareth Barker ◽  
Michael Brammer ◽  
Vincent Giampietro ◽  
Sukhwinder Shergill ◽  
...  

BackgroundDiffusion tensor magnetic resonance imaging studies in schizophrenia to date have been largely inconsistent. This may reflect variation in methodology, and the use of small samples with differing illness duration and medication exposure.AimsTo determine the extent and location of white matter microstructural changes in schizophrenia, using optimised diffusion tensor imaging in a large patient sample, and to consider the effects of illness duration and medication exposure.MethodScans from 76 patients with schizophrenia and 76 matched controls were used to compare fractional anisotropy, a measure of white matter microstructural integrity, between the groups.ResultsWe found widespread clusters of reduced fractional anisotropy in patients, affecting most major white matter tracts. These reductions did not correlate with illness duration, and there was no difference between age-matched chronically and briefly medicated patients.ConclusionsThe finding of widespread fractional anisotropy reductions in our larger sample of patients with schizophrenia may explain some of the inconsistent findings of previous, smaller studies.


2021 ◽  
Author(s):  
Thomas Vanicek ◽  
Murray Reed ◽  
Jakob Unterholzner ◽  
Manfred Kloebl ◽  
Godber Mathis Godbersen ◽  
...  

Background: Neuroplastic processes are influenced by selective serotonergic reuptake inhibitors, while learning in conjunction with the administration of serotonergic agents alters white matter microstructure in humans. The goal of this double-blind, placebo-controlled imaging study was to investigate the influence of escitalopram on white matter plasticity during (re)learning. Methods: Seventy-one healthy individuals (age = 25.6+/-5.0, 43 females) underwent 3 diffusion magnetic resonance imaging sessions: at baseline, after 3-weeks of associative learning (emotional/non-emotional content) and after relearning shuffled associations for an additional 3 weeks. During the relearning phase, subjects received daily escitalopram 10 mg or placebo orally. Data were analyzed using the FMRIB Software Library (FSL) and the implemented Tract-Based Spatial Statistics (TBSS) approach. Results: The TBSS analysis revealed widespread decreases in fractional anisotropy metrics in subjects that received escitalopram. In addition, axial diffusivity decreases were mainly found in the corpus callosum and in areas within the internal capsule. In subjects receiving placebo, we did not find such effects, nor did our results show diffusivity changes related to learning or relearning. Conclusion: Diffusivity changes were found within several tracts in the escitalopram group, while we observed no changes in the placebo group. Although previous studies examining the effects of SSRIs on white matter tracts in humans are underrepresented, our results suggest a relationship between serotonergic agents and diffusivity parameters. The findings of this study implicate that escitalopram may directly or indirectly impact white matter microstructures in healthy subjects. Nevertheless, we did not find a relationship between serotonergic modulation, neuroplastic effects and relearning.


2019 ◽  
Author(s):  
Justin C. Hayes ◽  
Katherine L Alfred ◽  
Rachel Pizzie ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Modality specific encoding habits account for a significant portion of individual differences reflected in functional activation during cognitive processing. Yet, little is known about how these habits of thought influence long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports, we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter tracts within an a priori speech production network increased as a function of word bias. These results demonstrate long-term structural and morphological differences associated with verbal habits of thought.


Sign in / Sign up

Export Citation Format

Share Document