scholarly journals Methods for addressing the protein-protein interaction between histone deacetylase 6 and ubiquitin

2017 ◽  
Author(s):  
Carolina dos S. Passos ◽  
Nathalie Deschamps ◽  
Yun Choi ◽  
Robert E. Cohen ◽  
Remo Perozzo ◽  
...  

AbstractHistone deacetylase 6 (HDAC6) is a cytoplasmic HDAC isoform able to remove acetyl groups from cellular substrates such as α-tubulin. In addition to the two deacetylase domains, HDAC6 has a C-terminal zinc-finger ubiquitin (Ub)-binding domain (ZnF-UBP) able to recognize free Ub. HDAC6-Ub interaction is thought to function in regulating the elimination of misfolded proteins during stress response through the aggresome pathway. Small molecules inhibiting deacetylation by HDAC6 were shown to reduce aggresomes, but the interplay between HDAC6 catalytic activity and Ub-binding function is not fully understood. Here we describe two methods to measure the HDAC6-Ub interaction in vitro using full-length HDAC6. Both methods were effective for screening inhibitors of the HDAC6-Ub protein-protein interaction independently of the catalytic activity. Our results suggest a potential role for the HDAC6 deacetylase domains in modulating HDAC6-Ub interaction. This new aspect of HDAC6 regulation can be targeted to address the roles of HDAC6-Ub interaction in normal and disease conditions.

2013 ◽  
Vol 5 (12) ◽  
pp. 1423-1435 ◽  
Author(s):  
Lucy D Smith ◽  
Robin J Leatherbarrow ◽  
Alan C Spivey

2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


Virology ◽  
1975 ◽  
Vol 67 (1) ◽  
pp. 1-13 ◽  
Author(s):  
T.I. Atabekova ◽  
M.E. Taliansky ◽  
J.G. Atabekov

Biochemistry ◽  
2017 ◽  
Vol 56 (12) ◽  
pp. 1768-1784 ◽  
Author(s):  
Degang Liu ◽  
David Xu ◽  
Min Liu ◽  
William Eric Knabe ◽  
Cai Yuan ◽  
...  

2017 ◽  
Vol 114 (40) ◽  
pp. E8333-E8342 ◽  
Author(s):  
Maximilian G. Plach ◽  
Florian Semmelmann ◽  
Florian Busch ◽  
Markus Busch ◽  
Leonhard Heizinger ◽  
...  

Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein–protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein–protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein–protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein–protein interactions.


Sign in / Sign up

Export Citation Format

Share Document