scholarly journals Deep Learning for Multi-task Plant Phenotyping

2017 ◽  
Author(s):  
Michael P. Pound ◽  
Jonathan A. Atkinson ◽  
Darren M. Wells ◽  
Tony P. Pridmore ◽  
Andrew P. French

AbstractPlant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recently, machine learning approaches have shown impressive results in many areas of computer vision, but these rely on large datasets that are at present not available for crops. We present a new dataset, called ACID, that provides hundreds of accurately annotated images of wheat spikes and spikelets, along with image level class annotation. We then present a deep learning approach capable of accurately localising wheat spikes and spikelets, despite the varied nature of this dataset. As well as locating features, our network offers near perfect counting accuracy for spikes (95.91%) and spikelets (99.66%). We also extend the network to perform simultaneous classification of images, demonstrating the power of multi-task deep architectures for plant phenotyping. We hope that our dataset will be useful to researchers in continued improvement of plant and crop phenotyping. With this in mind, alongside the dataset we will make all code and trained models available online.


Author(s):  
O. Teslenko ◽  
A. Pashko

The article discuses approaches to solving the problem of determining the activity of the driver from the cameras installed in the cargiven the actve development of intelligent driver asistance systems in recent years. The aricle provides an overview of the main problems that arise for the driver while driving Main advances in autonomous drving are presented and the classification of types of autonomous vehicles is provided . Next, the methods of solving the identified problems are described. The main part of the article focuses on solving the problem of determining the state of the driver during driving. Reasons for usage of computer vision and machine learning approaches for soving this task are described. The basic paradigms of the solution of his problem - classification of images, classification of a video stream, detection of the basic points of a body of the driver on the image from the camera installed inside a car are investigated. Main ideas of every method are described. The approaches are evaluated with identification of main advantages and drawbacks of the presented methods.



2022 ◽  
pp. 274-290
Author(s):  
M. Abdul Jawad ◽  
Farida Khursheed

The expeditious progress of machine learning, especially the deep learning techniques, keep propelling the medical imaging community's heed in applying these techniques in improving the accuracy of cancer screening. Among various types of cancers, breast cancer is the most detrimental disease affecting women today. The prognosis of such types of disease becomes a very challenging task for radiologists due the huge number of cases together with careful and thorough examination it demands. The constraints of present CAD open up a need for new and accurate detection procedures. Deep learning approaches have gained a tremendous recognition in the areas of object detection, segmentation, image recognition, and computer vision. Precise and premature detection and classification of lesions is very critical for increasing the survival rates of patients. Recent CNN models are designed to enhance radiologists' understandings to identify even the least possible lesions at the very early stage.



IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 551-604
Author(s):  
Damien Warren Fernando ◽  
Nikos Komninos ◽  
Thomas Chen

This survey investigates the contributions of research into the detection of ransomware malware using machine learning and deep learning algorithms. The main motivations for this study are the destructive nature of ransomware, the difficulty of reversing a ransomware infection, and how important it is to detect it before infecting a system. Machine learning is coming to the forefront of combatting ransomware, so we attempted to identify weaknesses in machine learning approaches and how they can be strengthened. The threat posed by ransomware is exceptionally high, with new variants and families continually being found on the internet and dark web. Recovering from ransomware infections is difficult, given the nature of the encryption schemes used by them. The increase in the use of artificial intelligence also coincides with this boom in ransomware. The exploration into machine learning and deep learning approaches when it comes to detecting ransomware poses high interest because machine learning and deep learning can detect zero-day threats. These techniques can generate predictive models that can learn the behaviour of ransomware and use this knowledge to detect variants and families which have not yet been seen. In this survey, we review prominent research studies which all showcase a machine learning or deep learning approach when detecting ransomware malware. These studies were chosen based on the number of citations they had by other research. We carried out experiments to investigate how the discussed research studies are impacted by malware evolution. We also explored the new directions of ransomware and how we expect it to evolve in the coming years, such as expansion into IoT (Internet of Things), with IoT being integrated more into infrastructures and into homes.



2019 ◽  
Vol 9 (7) ◽  
pp. 1385 ◽  
Author(s):  
Luca Donati ◽  
Eleonora Iotti ◽  
Giulio Mordonini ◽  
Andrea Prati

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.



2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Massa Baali ◽  
Nada Ghneim

Abstract Nowadays, sharing moments on social networks have become something widespread. Sharing ideas, thoughts, and good memories to express our emotions through text without using a lot of words. Twitter, for instance, is a rich source of data that is a target for organizations for which they can use to analyze people’s opinions, sentiments and emotions. Emotion analysis normally gives a more profound overview of the feelings of an author. In Arabic Social Media analysis, nearly all projects have focused on analyzing the expressions as positive, negative or neutral. In this paper we intend to categorize the expressions on the basis of emotions, namely happiness, anger, fear, and sadness. Different approaches have been carried out in the area of automatic textual emotion recognition in the case of other languages, but only a limited number were based on deep learning. Thus, we present our approach used to classify emotions in Arabic tweets. Our model implements a deep Convolutional Neural Networks (CNN) trained on top of trained word vectors specifically on our dataset for sentence classification tasks. We compared the results of this approach with three other machine learning algorithms which are SVM, NB and MLP. The architecture of our deep learning approach is an end-to-end network with word, sentence, and document vectorization steps. The deep learning proposed approach was evaluated on the Arabic tweets dataset provided by SemiEval for the EI-oc task, and the results-compared to the traditional machine learning approaches-were excellent.



2016 ◽  
Author(s):  
Michael P. Pound ◽  
Alexandra J. Burgess ◽  
Michael H. Wilson ◽  
Jonathan A. Atkinson ◽  
Marcus Griffiths ◽  
...  

AbstractDeep learning is an emerging field that promises unparalleled results on many data analysis problems. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping, and demonstrate state-of-the-art results for root and shoot feature identification and localisation. We predict a paradigm shift in image-based phenotyping thanks to deep learning approaches.



Skin lesion growth of unwanted cells on the upper most layer of skin. These lesions may conation cancerous cells which may lead to health issues to the patient and in severe cases may lead to patient’s demise. Dermatologists identify type of skin cancer by identifying it in image generated using dermatoscope and procedure known as Dermatoscopy. Previously there have been many studies which show classification of these dermatoscopic images using machine learning and deep learning solutions. Machine learning approaches use image processing techniques for identifying mole in given image and then for classification researchers have used techniques like SVM , random forest etc. With advances in field of deep learning there have been various methods proposed on classification of using CNN which achieves more precision and accuracy. In this paper we are proposing a CNN based approach for image classification with best overall accuracy of 78.08% and good multiclass AUC for all classes in HAM10000 dataset.



2019 ◽  
Vol 9 (21) ◽  
pp. 4500 ◽  
Author(s):  
Phung ◽  
Rhee

Research on clouds has an enormous influence on sky sciences and related applications, and cloud classification plays an essential role in it. Much research has been conducted which includes both traditional machine learning approaches and deep learning approaches. Compared with traditional machine learning approaches, deep learning approaches achieved better results. However, most deep learning models need large data to train due to the large number of parameters. Therefore, they cannot get high accuracy in case of small datasets. In this paper, we propose a complete solution for high accuracy of classification of cloud image patches on small datasets. Firstly, we designed a suitable convolutional neural network (CNN) model for small datasets. Secondly, we applied regularization techniques to increase generalization and avoid overfitting of the model. Finally, we introduce a model average ensemble to reduce the variance of prediction and increase the classification accuracy. We experiment the proposed solution on the Singapore whole-sky imaging categories (SWIMCAT) dataset, which demonstrates perfect classification accuracy for most classes and confirms the robustness of the proposed model.



2021 ◽  
Vol 11 (16) ◽  
pp. 7561
Author(s):  
Umair Iqbal ◽  
Johan Barthelemy ◽  
Wanqing Li ◽  
Pascal Perez

Blockage of culverts by transported debris materials is reported as the salient contributor in originating urban flash floods. Conventional hydraulic modeling approaches had no success in addressing the problem primarily because of the unavailability of peak floods hydraulic data and the highly non-linear behavior of debris at the culvert. This article explores a new dimension to investigate the issue by proposing the use of intelligent video analytics (IVA) algorithms for extracting blockage related information. The presented research aims to automate the process of manual visual blockage classification of culverts from a maintenance perspective by remotely applying deep learning models. The potential of using existing convolutional neural network (CNN) algorithms (i.e., DarkNet53, DenseNet121, InceptionResNetV2, InceptionV3, MobileNet, ResNet50, VGG16, EfficientNetB3, NASNet) is investigated over a dataset from three different sources (i.e., images of culvert openings and blockage (ICOB), visual hydrology-lab dataset (VHD), synthetic images of culverts (SIC)) to predict the blockage in a given image. Models were evaluated based on their performance on the test dataset (i.e., accuracy, loss, precision, recall, F1 score, Jaccard Index, region of convergence (ROC) curve), floating point operations per second (FLOPs) and response times to process a single test instance. Furthermore, the performance of deep learning models was benchmarked against conventional machine learning algorithms (i.e., SVM, RF, xgboost). In addition, the idea of classifying deep visual features extracted by CNN models (i.e., ResNet50, MobileNet) using conventional machine learning approaches was also implemented in this article. From the results, NASNet was reported most efficient in classifying the blockage images with the 5-fold accuracy of 85%; however, MobileNet was recommended for the hardware implementation because of its improved response time with 5-fold accuracy comparable to NASNet (i.e., 78%). Comparable performance to standard CNN models was achieved for the case where deep visual features were classified using conventional machine learning approaches. False negative (FN) instances, false positive (FP) instances and CNN layers activation suggested that background noise and oversimplified labelling criteria were two contributing factors in the degraded performance of existing CNN algorithms. A framework for partial automation of the visual blockage classification process was proposed, given that none of the existing models was able to achieve high enough accuracy to completely automate the manual process. In addition, a detection-classification pipeline with higher blockage classification accuracy (i.e., 94%) has been proposed as a potential future direction for practical implementation.



Sign in / Sign up

Export Citation Format

Share Document