Machine Learning-Aided Automatic Detection of Breast Cancer

2022 ◽  
pp. 274-290
Author(s):  
M. Abdul Jawad ◽  
Farida Khursheed

The expeditious progress of machine learning, especially the deep learning techniques, keep propelling the medical imaging community's heed in applying these techniques in improving the accuracy of cancer screening. Among various types of cancers, breast cancer is the most detrimental disease affecting women today. The prognosis of such types of disease becomes a very challenging task for radiologists due the huge number of cases together with careful and thorough examination it demands. The constraints of present CAD open up a need for new and accurate detection procedures. Deep learning approaches have gained a tremendous recognition in the areas of object detection, segmentation, image recognition, and computer vision. Precise and premature detection and classification of lesions is very critical for increasing the survival rates of patients. Recent CNN models are designed to enhance radiologists' understandings to identify even the least possible lesions at the very early stage.

2021 ◽  
Vol 309 ◽  
pp. 01008
Author(s):  
P. Mounika ◽  
S. Govinda Rao

Parkinson’s disease (PD) is a sophisticated anxiety malady that impairs movement. Symptoms emerge gradually, initiating with a slight tremor in only one hand occasionally. Tremors are prevalent, although the condition is sometimes associated with stiffness or slowed mobility. In the early degrees of PD, your face can also additionally display very little expression. Your fingers won’t swing while you walk. Your speech can also additionally grow to be gentle or slurred. PD signs and symptoms get worse as your circumstance progresses over time. The goal of this study is to test the efficiency of deep learning and machine learning approaches in order to identify the most accurate strategy for sensing Parkinson’s disease at an early stage. In order to measure the average performance most accurately, we compared deep learning and machine learning methods.


2017 ◽  
Author(s):  
Michael P. Pound ◽  
Jonathan A. Atkinson ◽  
Darren M. Wells ◽  
Tony P. Pridmore ◽  
Andrew P. French

AbstractPlant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recently, machine learning approaches have shown impressive results in many areas of computer vision, but these rely on large datasets that are at present not available for crops. We present a new dataset, called ACID, that provides hundreds of accurately annotated images of wheat spikes and spikelets, along with image level class annotation. We then present a deep learning approach capable of accurately localising wheat spikes and spikelets, despite the varied nature of this dataset. As well as locating features, our network offers near perfect counting accuracy for spikes (95.91%) and spikelets (99.66%). We also extend the network to perform simultaneous classification of images, demonstrating the power of multi-task deep architectures for plant phenotyping. We hope that our dataset will be useful to researchers in continued improvement of plant and crop phenotyping. With this in mind, alongside the dataset we will make all code and trained models available online.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


Cataract is a degenerative condition that, according to estimations, will rise globally. Even though there are various proposals about its diagnosis, there are remaining problems to be solved. This paper aims to identify the current situation of the recent investigations on cataract diagnosis using a framework to conduct the literature review with the intention of answering the following research questions: RQ1) Which are the existing methods for cataract diagnosis? RQ2) Which are the features considered for the diagnosis of cataracts? RQ3) Which is the existing classification when diagnosing cataracts? RQ4) And Which obstacles arise when diagnosing cataracts? Additionally, a cross-analysis of the results was made. The results showed that new research is required in: (1) the classification of “congenital cataract” and, (2) portable solutions, which are necessary to make cataract diagnoses easily and at a low cost.


2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 551-604
Author(s):  
Damien Warren Fernando ◽  
Nikos Komninos ◽  
Thomas Chen

This survey investigates the contributions of research into the detection of ransomware malware using machine learning and deep learning algorithms. The main motivations for this study are the destructive nature of ransomware, the difficulty of reversing a ransomware infection, and how important it is to detect it before infecting a system. Machine learning is coming to the forefront of combatting ransomware, so we attempted to identify weaknesses in machine learning approaches and how they can be strengthened. The threat posed by ransomware is exceptionally high, with new variants and families continually being found on the internet and dark web. Recovering from ransomware infections is difficult, given the nature of the encryption schemes used by them. The increase in the use of artificial intelligence also coincides with this boom in ransomware. The exploration into machine learning and deep learning approaches when it comes to detecting ransomware poses high interest because machine learning and deep learning can detect zero-day threats. These techniques can generate predictive models that can learn the behaviour of ransomware and use this knowledge to detect variants and families which have not yet been seen. In this survey, we review prominent research studies which all showcase a machine learning or deep learning approach when detecting ransomware malware. These studies were chosen based on the number of citations they had by other research. We carried out experiments to investigate how the discussed research studies are impacted by malware evolution. We also explored the new directions of ransomware and how we expect it to evolve in the coming years, such as expansion into IoT (Internet of Things), with IoT being integrated more into infrastructures and into homes.


Sign in / Sign up

Export Citation Format

Share Document