scholarly journals A physics-explicit model of bacterial conjugation shows the stabilizing role of the conjugative junction

2017 ◽  
Author(s):  
Jakub Pastuszak ◽  
Bartlomiej Waclaw

Conjugation is a process in which bacteria exchange DNA through a physical connection (conjugative junction) between mating cells. Despite its significance for processes such as the spread of antibiotic resistance, the role of physical forces in conjugation is poorly understood. Here we use computer models to show that the conjugative junction not only serves as a link to transfer the DNA but it also mechanically stabilises the mating pair which significantly increases the conjugation rate. We discuss the importance of our findings for biological evolution and suggest experiments to validate them.

2017 ◽  
Author(s):  
Fred F. Farrell ◽  
Matti Gralka ◽  
Oskar Hallatschek ◽  
Bartlomiej Waclaw

AbstractBacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed, diluted cultures routinely used in microbial research, bacteria in a microcolonv interact mechanically with one another and with the substrate to which they are attached. Despite their ubiquity, little is known about the role of such mechanical interactions on growth and biological evolution of microbial populations. Here we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony, this affects biological evolution. We show that the probability that a faster-growing mutant “surfs” at the colony’s frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity, friction). Although all these factors contribute to the surfing probability in seemingly different ways, they all ultimately exhibit their effects by altering the roughness of the expanding frontier of the colony and the orientation of cells. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interaction may be relevant to processes such asde novoevolution of antibiotic resistance.


2020 ◽  
Vol 99 (4) ◽  
pp. 379-383
Author(s):  
Vasily N. Afonyushkin ◽  
N. A. Donchenko ◽  
Ju. N. Kozlova ◽  
N. A. Davidova ◽  
V. Yu. Koptev ◽  
...  

Pseudomonas aeruginosa is a widely represented species of bacteria possessing of a pathogenic potential. This infectious agent is causing wound infections, fibrotic cystitis, fibrosing pneumonia, bacterial sepsis, etc. The microorganism is highly resistant to antiseptics, disinfectants, immune system responses of the body. The responses of a quorum sense of this kind of bacteria ensure the inclusion of many pathogenicity factors. The analysis of the scientific literature made it possible to formulate four questions concerning the role of biofilms for the adaptation of P. aeruginosa to adverse environmental factors: Is another person appears to be predominantly of a source an etiological agent or the source of P. aeruginosa infection in the environment? Does the formation of biofilms influence on the antibiotic resistance? How the antagonistic activity of microorganisms is realized in biofilm form? What is the main function of biofilms in the functioning of bacteria? A hypothesis has been put forward the effect of biofilms on the increase of antibiotic resistance of bacteria and, in particular, P. aeruginosa to be secondary in charcter. It is more likely a biofilmboth to fulfill the function of storing nutrients and provide topical competition in the face of food scarcity. In connection with the incompatibility of the molecular radii of most antibiotics and pores in biofilm, biofilm is doubtful to be capable of performing a barrier function for protecting against antibiotics. However, with respect to antibodies and immunocompetent cells, the barrier function is beyond doubt. The biofilm is more likely to fulfill the function of storing nutrients and providing topical competition in conditions of scarcity of food resources.


2018 ◽  
Vol 2 (4) ◽  
pp. 46-59
Author(s):  
A.G. Salmanov ◽  
O.M. Verner ◽  
L.F. Slepova

Species of the Acinetobacter represent opportunistic bacteria with a growing clinical significance for Healthcare-associated infections (HAIs). In this literature review, we focus on the current role of Acinetobacter in infectious pathology and describe taxonomy, pathogenicity, and antibiotic resistance of these bacteria. Pathogenesis and regulation of virulence factors in Acinetobacter spp. are described in detail. The majority of acinetobacterial infections are associated with A. baumannii and occur predominantly in an immunocompromised host. Usually, acinetobacterial  infections  are characterized by local purulent inflammation; in severe cases, meningitis and sepsis may develop. Antibiotic resistance of Acinetobacter is a major clinical problem; therefore we give special attention to laboratory testing of resistance to antibiotics as well as identification of Acinetobacter.


Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 671
Author(s):  
Federica Giacometti ◽  
Hesamaddin Shirzad-Aski ◽  
Susana Ferreira

Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal–human–environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.


2007 ◽  
Vol 45 (12) ◽  
pp. 1187-1199 ◽  
Author(s):  
Mark Potse ◽  
Ruben Coronel ◽  
A.-Robert LeBlanc ◽  
Alain Vinet

1987 ◽  
Vol 31 (1) ◽  
pp. 121-123 ◽  
Author(s):  
T R Parr ◽  
R A Moore ◽  
L V Moore ◽  
R E Hancock

Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


Sign in / Sign up

Export Citation Format

Share Document