scholarly journals Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations

2017 ◽  
Author(s):  
Fred F. Farrell ◽  
Matti Gralka ◽  
Oskar Hallatschek ◽  
Bartlomiej Waclaw

AbstractBacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed, diluted cultures routinely used in microbial research, bacteria in a microcolonv interact mechanically with one another and with the substrate to which they are attached. Despite their ubiquity, little is known about the role of such mechanical interactions on growth and biological evolution of microbial populations. Here we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony, this affects biological evolution. We show that the probability that a faster-growing mutant “surfs” at the colony’s frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity, friction). Although all these factors contribute to the surfing probability in seemingly different ways, they all ultimately exhibit their effects by altering the roughness of the expanding frontier of the colony and the orientation of cells. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interaction may be relevant to processes such asde novoevolution of antibiotic resistance.

2017 ◽  
Vol 14 (131) ◽  
pp. 20170073 ◽  
Author(s):  
Fred D. Farrell ◽  
Matti Gralka ◽  
Oskar Hallatschek ◽  
Bartlomiej Waclaw

Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant ‘surfs’ at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance.


2017 ◽  
Author(s):  
Jakub Pastuszak ◽  
Bartlomiej Waclaw

Conjugation is a process in which bacteria exchange DNA through a physical connection (conjugative junction) between mating cells. Despite its significance for processes such as the spread of antibiotic resistance, the role of physical forces in conjugation is poorly understood. Here we use computer models to show that the conjugative junction not only serves as a link to transfer the DNA but it also mechanically stabilises the mating pair which significantly increases the conjugation rate. We discuss the importance of our findings for biological evolution and suggest experiments to validate them.


2020 ◽  
Vol 15 (2) ◽  
pp. 143-157 ◽  
Author(s):  
Abigail L Colclough ◽  
Ilyas Alav ◽  
Emily E Whittle ◽  
Hannah L Pugh ◽  
Elizabeth M Darby ◽  
...  

Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.


2016 ◽  
Vol 04 (01) ◽  
pp. 4-10

AbstractImmunosuppression permits graft survival after transplantation and consequently a longer and better life. On the other hand, it increases the risk of infection, for instance with cytomegalovirus (CMV). However, the various available immunosuppressive therapies differ in this regard. One of the first clinical trials using de novo everolimus after kidney transplantation [1] already revealed a considerably lower incidence of CMV infection in the everolimus arms than in the mycophenolate mofetil (MMF) arm. This result was repeatedly confirmed in later studies [2–4]. Everolimus is now considered a substance with antiviral properties. This article is based on the expert meeting “Posttransplant CMV infection and the role of immunosuppression”. The expert panel called for a paradigm shift: In a CMV prevention strategy the targeted selection of the immunosuppressive therapy is also a key element. For patients with elevated risk of CMV, mTOR inhibitor-based immunosuppression is advantageous as it is associated with a significantly lower incidence of CMV events.


2020 ◽  
Vol 99 (4) ◽  
pp. 379-383
Author(s):  
Vasily N. Afonyushkin ◽  
N. A. Donchenko ◽  
Ju. N. Kozlova ◽  
N. A. Davidova ◽  
V. Yu. Koptev ◽  
...  

Pseudomonas aeruginosa is a widely represented species of bacteria possessing of a pathogenic potential. This infectious agent is causing wound infections, fibrotic cystitis, fibrosing pneumonia, bacterial sepsis, etc. The microorganism is highly resistant to antiseptics, disinfectants, immune system responses of the body. The responses of a quorum sense of this kind of bacteria ensure the inclusion of many pathogenicity factors. The analysis of the scientific literature made it possible to formulate four questions concerning the role of biofilms for the adaptation of P. aeruginosa to adverse environmental factors: Is another person appears to be predominantly of a source an etiological agent or the source of P. aeruginosa infection in the environment? Does the formation of biofilms influence on the antibiotic resistance? How the antagonistic activity of microorganisms is realized in biofilm form? What is the main function of biofilms in the functioning of bacteria? A hypothesis has been put forward the effect of biofilms on the increase of antibiotic resistance of bacteria and, in particular, P. aeruginosa to be secondary in charcter. It is more likely a biofilmboth to fulfill the function of storing nutrients and provide topical competition in the face of food scarcity. In connection with the incompatibility of the molecular radii of most antibiotics and pores in biofilm, biofilm is doubtful to be capable of performing a barrier function for protecting against antibiotics. However, with respect to antibodies and immunocompetent cells, the barrier function is beyond doubt. The biofilm is more likely to fulfill the function of storing nutrients and providing topical competition in conditions of scarcity of food resources.


2018 ◽  
Vol 2 (4) ◽  
pp. 46-59
Author(s):  
A.G. Salmanov ◽  
O.M. Verner ◽  
L.F. Slepova

Species of the Acinetobacter represent opportunistic bacteria with a growing clinical significance for Healthcare-associated infections (HAIs). In this literature review, we focus on the current role of Acinetobacter in infectious pathology and describe taxonomy, pathogenicity, and antibiotic resistance of these bacteria. Pathogenesis and regulation of virulence factors in Acinetobacter spp. are described in detail. The majority of acinetobacterial infections are associated with A. baumannii and occur predominantly in an immunocompromised host. Usually, acinetobacterial  infections  are characterized by local purulent inflammation; in severe cases, meningitis and sepsis may develop. Antibiotic resistance of Acinetobacter is a major clinical problem; therefore we give special attention to laboratory testing of resistance to antibiotics as well as identification of Acinetobacter.


Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


2004 ◽  
Vol 52 (Suppl 1) ◽  
pp. S122.6-S123
Author(s):  
M. Garg ◽  
C. Bell ◽  
L. Rogers ◽  
S. Bassilian ◽  
W. N.P. Lee

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chiharu Uchida

Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


Sign in / Sign up

Export Citation Format

Share Document