scholarly journals Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission

2017 ◽  
Author(s):  
John H. Huber ◽  
Marissa L. Childs ◽  
Jamie M. Caldwell ◽  
Erin A. Mordecai

AbstractDengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal variation in temperature, the model provides a baseline for mechanistically understanding environmental suitability for virus transmission by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors onto this mechanistic temperature-dependent framework is critical for understanding likelihood and magnitude of outbreaks.Non-Technical SummaryMosquito-borne viruses like dengue, Zika, and chikungunya have recently caused large epidemics that are partly driven by temperature. Using a mathematical model built from laboratory experimental data for Aedes aegypti mosquitoes and dengue virus, we examine the impact of variation in seasonal temperature regimes on epidemic size and duration. At constant temperatures, both low and high temperatures (20°C and 35°C) produce small epidemics, while intermediate temperatures like 25°C and 30°C produce much larger epidemics. In seasonally varying temperature environments, epidemics peak more rapidly at higher starting temperatures, while intermediate starting temperatures produce the largest epidemics. Seasonal mean temperatures of 25–35°C are most suitable for large epidemics when seasonality is low, but in more variable seasonal environments epidemic suitability peaks at lower annual average temperatures. Tropical and sub-tropical cities have the highest temperature suitability for epidemics, but more temperate cities with high seasonal variation also have the potential for very large epidemics.

2016 ◽  
Vol 283 (1835) ◽  
pp. 20160349 ◽  
Author(s):  
Xia Hua

Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data.


2019 ◽  
Author(s):  
Donald Salami ◽  
César Capinha ◽  
Carla Alexandra Sousa ◽  
Maria do Rosário Oliveira Martins ◽  
Cynthia Lord

AbstractThe recent emergence and established presence of Aedes aegypti in the Autonomous Region of Madeira, Portugal, was responsible for the first autochthonous outbreak of dengue in Europe. The island has not reported any dengue cases since the outbreak in 2012. However, there is a high risk that an introduction of the virus would result in another autochthonous outbreak given the presence of the vector and permissive environmental conditions. Understanding the dynamics of a potential epidemic is critical for targeted local control strategies.Here, we adopt a deterministic model for the transmission of dengue in Aedes aegypti mosquitoes. The model integrates empirical and mechanistic parameters for virus transmission, under seasonally varying temperatures for Funchal, Madeira Island. We examine the epidemic dynamics as triggered by the arrival date of an infectious individual; the influence of seasonal temperature mean and variation on the epidemic dynamics; and performed a sensitivity analysis on the following quantities of interest: the epidemic peak size, time to peak and the final epidemic size.Our results demonstrate the potential for summer to early winter transmission of dengue, with the arrival date significantly affecting the distribution of the timing and peak size of the epidemic. Mid-summer to early autumn arrivals are more likely to produce larger epidemics within a short peak time. Epidemics within this favorable period had an average of 18% of the susceptible population infected at the peak, at an average peak time of 70 days. We also demonstrated that seasonal temperature variation dramatically affects the epidemic dynamics, with warmer starting temperatures producing peaks more quickly after an introduction and larger epidemics. Overall, our quantities of interest were most sensitive to variance in the date of arrival, seasonal temperature, biting rate, transmission rates, and the mosquito population; the magnitude of sensitivity differs across quantities.Our model could serve as a useful guide in the development of effective local control and mitigation strategies for dengue fever in Madeira Island.Author SummaryThe presence of Aedes aegypti mosquitoes in Madeira Island had recently caused the first local outbreak of dengue in Europe. The island is at risk of another local transmission if triggered by the introduction of the dengue virus by an infected person. Using a mathematical model for the transmission of dengue, we examine the dynamics of a potential epidemic triggered by the arrival of an infected person on the island. We also examine the impact of seasonal temperature variation on the epidemic dynamics. Our results show the potential for summer to early winter transmission of dengue on the island, and that the arrival date of an infectious person affects the distribution of the timing and peak size of the epidemic. Arrival dates during mid-summer to early autumn were more likely to produce larger epidemic peak size within a short time. We also show that seasonal temperature variation dramatically affects the epidemic dynamics. With warmer starting temperatures, epidemics peak more rapidly and produce a larger epidemic size. Our model could be useful to estimate the risk of an epidemic outbreak and as a guide for local control and mitigation strategies for dengue on the island.


2019 ◽  
Vol 7 (12) ◽  
pp. 713 ◽  
Author(s):  
Chenbing Ai ◽  
Zhang Yan ◽  
Han Zhou ◽  
Shanshan Hou ◽  
Liyuan Chai ◽  
...  

It is well acknowledged that the activities of activated sludge (AS) are influenced by seasonal temperature variation. However, the underlying mechanisms remain largely unknown. Here, the activities of activated sludge under three simulated temperature variation trends were compared in lab-scale. The TN, HN3-H, and COD removal activities of activated sludge were improved as temperature elevated from 20 °C to 35 °C. While, the TN, HN3-H, COD and total phosphorus removal activities of activated sludge were inhibited as temperature declined from 20 °C to 5 °C. Both the extracellular polymer substances (EPS) composition (e.g., total amount, PS, PN and DNA) and sludge index of activated sludge were altered by simulated seasonal temperature variation. The variation of microbial community structures and the functional potentials of activated sludge were further explored by metagenomics. Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes were the dominant phyla for each activated sludge sample under different temperatures. However, the predominant genera of activated sludge were significantly modulated by simulated temperature variation. The functional genes encoding enzymes for nitrogen metabolism in microorganisms were analyzed. The enzyme genes related to ammonification had the highest abundance despite the changing temperature, especially for gene encoding glutamine synthetase. With the temperature raising from 20 °C to 35 °C. The abundance of amoCAB genes encoding ammonia monooxygenase (EC:1.14.99.39) increased by 305.8%. Meanwhile, all the enzyme genes associate with denitrification were reduced. As the temperature declined from 20 °C to 5 °C, the abundance of enzyme genes related to nitrogen metabolism were raised except for carbamate kinase (EC:2.7.2.2), glutamate dehydrogenase (EC:1.4.1.3), glutamine synthetase (EC:6.3.1.2). Metagenomic data indicate that succession of the dominant genera in microbial community structure is, to some extent, beneficial to maintain the functional stability of activated sludge under the temperature variation within a certain temperature range. This study provides novel insights into the effects of seasonal temperature variation on the activities of activated sludge.


Author(s):  
Panpim Thongsripong ◽  
Dawn M Wesson

Abstract Dengue virus infection, transmitted via mosquito bites, poses a substantial risk to global public health. Studies suggest that the mosquito’s microbial community can profoundly influence vector-borne pathogen transmissions, including dengue virus. Ascogregarina culicis (Ross) of the phylum Apicomplexa is among the most common parasites of Aedes aegypti (Linnaeus), the principal vector of dengue. Despite a high prevalence worldwide, including in the areas where dengue is endemic, the impact of A. culicis on Ae. aegypti vector competence for dengue virus is unknown. This study aimed to investigate the effects of A. culicis infection on mosquito size and fitness, as measured by wing length, and the susceptibility to dengue virus infection in Ae. aegypti. Our results showed that there was no statistically significant difference in wing lengths between Ae. aegypti infected and not infected with A. culicis. Furthermore, A. culicis infection did not significantly affect dengue virus infection or disseminated infection rate. However, there was a significant association between shorter wings and higher dengue virus infection rate, whereby a 0.1-mm increase in wing length decreased the odds of the mosquito being infected by 32%. Thus, based on our result, A. culicis infection does not influence the body size and dengue virus infection in Ae. aegypti. This study helps to shed light on a common but neglected eukaryotic mosquito parasite.


Sign in / Sign up

Export Citation Format

Share Document