scholarly journals The IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation

2017 ◽  
Author(s):  
Jhuma Pramanik ◽  
Xi Chen ◽  
Gozde Kar ◽  
Tomás Gomes ◽  
Johan Henriksson ◽  
...  

SummaryThe IRE1a-XBP1 pathway, a conserved adaptive mediator of the unfolded protein response, is indispensable for the development of secretory cells. It maintains endoplasmic reticulum homeostasis by facilitating protein folding and enhancing secretory capacity of the cells. Its role in immune cells is emerging. It is involved in dendritic cell, plasma cell and eosinophil development and differentiation. Using genome-wide approaches, integrating ChIPmentation and mRNA-sequencing data, we have elucidated the regulatory circuitry governed by the IRE1a-XBP1 pathway in type-2 T helper cells (Th2). We show that the XBP1 transcription factor is activated by splicing in vivo in T helper cell lineages. We report a comprehensive repertoire of XBP1 target genes in Th2 lymphocytes. We found that the pathway is conserved across cell types in terms of resolving secretory stress, and has T helper cell-specific functions in controlling activation-dependent Th2 cell proliferation and regulating cytokine expression in addition to secretion. These results provide a detailed picture of the regulatory map governed by the XBP1 transcription factor during Th2 lymphocyte activation.

2003 ◽  
Vol 12 (5) ◽  
pp. 285-292 ◽  
Author(s):  
Scott B. Cameron ◽  
Ellen H. Stolte ◽  
Anthony W. Chow ◽  
Huub F. J. Savelkoul

Background:T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigensin vivodisplay strong effects on Thsubset differentiation. The aim of the study was to detect the intrinsic capacity of T cells to polarise under variousex vivoconditions.Methods:Purified CD4+T cells obtained from superantigen-treated mice were cultured under Thpolarising conditionsin vitro. By combining intracellular cytokine staining and subsequent flow cytometric analysis with quantitative cytokine measurements in culture supernatants by enzyme-linked immunosorbent assay (ELISA), the differential Thpolarising capacity of the treatment can be detected in a qualitative and quantitative manner.Results and conclusions:BALB/c mice were shown to be biased to develop strong Th2 polarised immune responses using Th0 stimulation of purified CD4+T cells from phosphate-buffered saline-treated mice. Nevertheless, our analysis methodology convincingly showed that even in these mice, Toxic Shock Syndrome Toxin-1 treatmentin vivoresulted in a significantly stronger Th1 polarising effect than control treatment. Our results indicate that populations of Thcells can be assessed individually for their differential Th1 or Th2 maturation capacityin vivoby analysing robustin vitropolarisation cultures combined with intracellular cytokine staining and ELISA.


2020 ◽  
Vol 21 (21) ◽  
pp. 8011 ◽  
Author(s):  
Xiaoliang Zhu ◽  
Jinfang Zhu

The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.


2015 ◽  
Vol 45 (11) ◽  
pp. 3150-3157 ◽  
Author(s):  
Zhuo Fang ◽  
Katharina Hecklau ◽  
Fridolin Gross ◽  
Ivo Bachmann ◽  
Melanie Venzke ◽  
...  

1998 ◽  
Vol 188 (10) ◽  
pp. 1859-1866 ◽  
Author(s):  
I-Cheng Ho ◽  
David Lo ◽  
Laurie H. Glimcher

The c-maf protooncogene is a T helper cell type 2 (Th2)-specific transcription factor that activates the interleukin (IL)-4 promoter in vitro. Although it has been postulated that c-maf directs the Th2-specific expression of the IL-4 gene in vivo, direct evidence that c-maf functions during the differentiation of normal, primary T cells is lacking. We now demonstrate that overexpression of c-maf in vivo skews the Th immune response along a Th2 pathway, as evidenced by increased production of Th2 cytokines and the IL-4–dependent immunoglobulins, IgG1 and IgE. The overproduction of IgGl and IgE in the CD4 promoter/c-maf transgenic mice was IL-4 dependent since this was not observed in c-maf transgenic mice bred onto an IL-4–deficient background. Ectopic expression of c-maf in mature Th1 cells did not confer on them the ability to produce IL-4, but did decrease the production of IFN-γ. The attenuation of Th1 differentiation by c-maf overexpression occurred by a mechanism that was independent of IL-4 and other Th2 cytokines, and could be overcome by IL-12. These studies demonstrate that c-maf promotes Th2 differentiation by IL-4–dependent mechanisms and attenuates Th1 differentiation by Th2 cytokine-independent mechanisms.


2003 ◽  
Vol 198 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Guillaume Oldenhove ◽  
Magali de Heusch ◽  
Georgette Urbain-Vansanten ◽  
Jacques Urbain ◽  
Charlie Maliszewski ◽  
...  

Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II–restricted interferon γ–producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.


Rheumatology ◽  
2007 ◽  
Vol 46 (1) ◽  
pp. 44-48 ◽  
Author(s):  
R. W.-Y. Chan ◽  
F. M.-M. Lai ◽  
E. K.-M. Li ◽  
L.-S. Tam ◽  
K.-M. Chow ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3208-3218 ◽  
Author(s):  
Daniel B. Graham ◽  
Holly M. Akilesh ◽  
Grzegorz B. Gmyrek ◽  
Laura Piccio ◽  
Susan Gilfillan ◽  
...  

Abstract Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)–containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming.


Sign in / Sign up

Export Citation Format

Share Document