scholarly journals Identifying (un)controllable dynamical behavior in complex networks

2017 ◽  
Author(s):  
Jordan C Rozum ◽  
Réka Albert

AbstractWe present a technique applicable in any dynamical framework to identify control-robust subsets of an interacting system. These robust subsystems, which we call stable modules, are characterized by constraints on the variables that make up the subsystem. They are robust in the sense that if the defining constraints are satisfied at a given time, they remain satisfied for all later times, regardless of what happens in the rest of the system, and can only be broken if the constrained variables are externally manipulated. We identify stable modules as graph structures in an expanded network, which represents causal links between variable constraints. A stable module represents a system “decision point”, or trap subspace. Using the expanded network, small stable modules can be composed sequentially to form larger stable modules that describe dynamics on the system level. Collections of large, mutually exclusive stable modules describe the system’s repertoire of long-term behaviors. We implement this technique in a broad class of dynamical systems and illustrate its practical utility via examples and algorithmic analysis of two published biological network models. In the segment polarity gene network of Drosophila melanogaster, we obtain a state-space visualization that reproduces by novel means the four possible cell fates and predicts the outcome of cell transplant experiments. In the T-cell signaling network, we identify six signaling elements that determine the high-signal response and show that control of an element connected to them cannot disrupt this response.Author summaryWe show how to uncover the causal relationships between qualitative statements about the values of variables in ODE systems. We then show how these relationships can be used to identify subsystem behaviors that are robust to outside interventions. This informs potential system control strategies (e.g., in identifying drug targets). Typical analytical properties of biomolecular systems render them particularly amenable to our techniques. Furthermore, due to their often high dimension and large uncertainties, our results are particularly useful in biomolecular systems. We apply our methods to two quantitative biological models: the segment polarity gene network of Drosophila melanogaster and the T-cell signal transduction network.

1993 ◽  
Vol 44 (1) ◽  
pp. 65-80 ◽  
Author(s):  
P THEROND ◽  
D BUSSON ◽  
E GUILLEMET ◽  
B LIMBOURGBOUCHON ◽  
T PREAT ◽  
...  

1987 ◽  
Vol 7 (9) ◽  
pp. 3244-3251
Author(s):  
M C Mariol ◽  
T Preat ◽  
B Limbourg-Bouchon

Using the chromosomal walk technique, we isolated recombinant lambda bacteriophage and cosmid clones spanning 250 kilobases (kb) in the 17C-D region of the X chromosome of Drosophila melanogaster. This region was known to contain the segment polarity gene fused. Several lethal fused mutations were used to define more precisely the localization of this locus. Southern analysis of genomic DNA revealed that all of them were relatively large deficiencies, the smallest one being 40 kb long. None of the 12 viable fused mutations examined possessed detectable alterations. We isolated a cosmid containing an insertion covering the entire smallest fused deletion (40 kb). We injected this DNA into fused mutant embryos and obtained a partial phenotypic rescue of the embryonic pattern, indicating that this region contained all the sequences necessary for the embryonic expression of the fu+ gene. Within this DNA, a subclone of 14 kb codes for poly(A)+ RNAs of 3.5, 2.5, 1.6, and 1.3 kb detected in embryos from various developmental stages as well as in adults. All these transcripts showed the same developmental expression. This transcribed region was injected into fused mutant embryos, and once again we obtained a partial rescue of the embryonic phenotype, confirming that this region contained at least the fused gene.


Genetics ◽  
1992 ◽  
Vol 132 (3) ◽  
pp. 725-736 ◽  
Author(s):  
T Préat

Abstract fused (fu) is a maternal effect segment polarity gene of Drosophila melanogaster. In addition, fu females have tumorous ovaries. Two ethyl methanesulfonate mutageneses were carried out in order to isolate suppressors of the fu phenotype. A new gene, Suppressor of fused (Su(fu)), was identified. It is located in the 87C8 region of the third chromosome. Su(fu) displays a maternal effect and is also expressed later in development. Although Su(fu)LP is a complete loss-of-function mutation, it is homozygous viable and has no phenotype by itself. Su(fu) fully suppresses the embryonic and adult phenotypes of fu mutants. Su(fu) mutations are semidominant and a Su(fu)+ duplication has an opposite effect, enhancing the fused phenotype. It is proposed therefore that the Su(fu)+ product is involved in the same developmental step as the Fu+ kinase. Thus, a new gene interacting with the segment polarity pathway was identified using an indirect approach.


Development ◽  
1996 ◽  
Vol 122 (3) ◽  
pp. 795-804 ◽  
Author(s):  
M. Grbic ◽  
L.M. Nagy ◽  
S.B. Carroll ◽  
M. Strand

THe polyembryonic wasp Copidosoma floridanum produces up to 2000 individuals from a single egg. During the production of individual embryos the original anteroposterior axis of the egg is lost and axial patterning must subsequently be reestablished within each embryo. The mechanism by which this occurs is unknown. In most insects, egg polarity is established during oogenesis and early development takes place in a syncytium. In Drosophila melanogaster, the syncytium is considered essential for establishing the morphogenetic gradients that initiate segmental patterning. However, we found that development of C. floridanum occurs almost exclusively in a cellularized environment. To determine whether the D. melanogaster patterning cascade is conserved in the absence of a syncytium, we analyzed the expression of Even-skipped, Engrailed and Ultrabithorax/Abdominal-A during polyembryonic development. Here we show that in spite of the absence of a syncytium, the elements of the D. melanogaster segmentation hierarchy are conserved. The segment-polarity gene Engrailed and the homeotic genes Ultrabithorax/Abdominal-A are expressed in a conserved pattern relative to D. melanogaster. However, we detect an alteration in the expression of the Even-skipped antigen. Even-skipped is initially expressed in segmentally reiterated stripes and not in the pair-rule pattern as it is in D. melanogaster. We also observe that the expression of these regulatory proteins does not occur during the early proliferative phases of polyembryony. Our results indicate that a syncytium is not required for segmental patterning in this insect.


1987 ◽  
Vol 7 (9) ◽  
pp. 3244-3251 ◽  
Author(s):  
M C Mariol ◽  
T Preat ◽  
B Limbourg-Bouchon

Using the chromosomal walk technique, we isolated recombinant lambda bacteriophage and cosmid clones spanning 250 kilobases (kb) in the 17C-D region of the X chromosome of Drosophila melanogaster. This region was known to contain the segment polarity gene fused. Several lethal fused mutations were used to define more precisely the localization of this locus. Southern analysis of genomic DNA revealed that all of them were relatively large deficiencies, the smallest one being 40 kb long. None of the 12 viable fused mutations examined possessed detectable alterations. We isolated a cosmid containing an insertion covering the entire smallest fused deletion (40 kb). We injected this DNA into fused mutant embryos and obtained a partial phenotypic rescue of the embryonic pattern, indicating that this region contained all the sequences necessary for the embryonic expression of the fu+ gene. Within this DNA, a subclone of 14 kb codes for poly(A)+ RNAs of 3.5, 2.5, 1.6, and 1.3 kb detected in embryos from various developmental stages as well as in adults. All these transcripts showed the same developmental expression. This transcribed region was injected into fused mutant embryos, and once again we obtained a partial rescue of the embryonic phenotype, confirming that this region contained at least the fused gene.


1998 ◽  
Vol 258 (1-2) ◽  
pp. 45-52 ◽  
Author(s):  
D. Dooijes ◽  
M. van Beest ◽  
M. van de Wetering ◽  
G. Boulanger ◽  
T. Jones ◽  
...  

Genetics ◽  
1997 ◽  
Vol 145 (4) ◽  
pp. 1041-1052
Author(s):  
Janet L Epps ◽  
Jessa B Jones ◽  
Soichi Tanda

Here we describe a new segment polarity gene of Drosophila melanogaster, oroshigane (oro). Identified as a dominant enhancer of Bar (B), oro is also recessive embryonic lethal, and homozygous oro embryos show variable substitution of naked cuticle with denticles. These patterns are distinctly similar to those of hedgehog (hh) and wingless (wg) embryos, which indicates that oro functions in determining embryonic segment polarity. Evidence that oro function is involved in Hh signal transduction during embryogenesis is provided by its genetic interactions with the segment polarity genes patched (ptc) and fused (fu). Furthermore, ptcIN is a dominant suppressor of the oro embryonic lethal phenotype, suggesting a close and dose-dependent relationship between oro and ptc in Hh signal transduction. oro function is also required in imaginal development. The oro1 allele significantly reduces decapentaplegic (dpp), but not hh, expression in the eye imaginal disc. Furthermore, oro enhances the fu1 wing phenotype in a dominant manner. Based upon the interactions of oro with hh, ptc, and fu, we propose that the oro gene plays important roles in Hh signal transduction.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3561-3572 ◽  
Author(s):  
J. Royet ◽  
R. Finkelstein

Significant progress has been made towards understanding how pattern formation occurs in the imaginal discs that give rise to the limbs of Drosophila melanogaster. Here, we examine the process of regional specification that occurs in the eye-antennal discs, which form the head of the adult fruitfly. We demonstrate genetically that there is a graded requirement for the activity of the orthodenticle homeobox gene in forming specific structures of the developing head. Consistent with this result, we show that OTD protein is expressed in a graded fashion across the disc primordia of these structures and that different threshold levels of OTD are required for the formation of specific subdomains of the head. Finally, we provide evidence suggesting that otd acts through the segment polarity gene engrailed to specify medial head development.


Sign in / Sign up

Export Citation Format

Share Document