gene orthologs
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Victoria C. Moris ◽  
Lars Podsiadlowski ◽  
Sebastian Martin ◽  
Jan Philip Oeyen ◽  
Alexander Donath ◽  
...  

Cuticular hydrocarbons (CHCs) cover the cuticle of insects and serve as desiccation barrier and for chemical communication. While the main enzymatic steps of CHC biosynthesis are well understood, few of the underlying genes have been identified. Here we show how exploitation of intrasexual CHC dimorphism in a mason wasp, Odynerus spinipes, in combination with whole-genome sequencing and comparative transcriptomics facilitated identification of such genes. RNAi-mediated knockdown of twelve candidate gene orthologs in honey bees, Apis mellifera, confirmed nine genes impacting CHC profile composition. Most of them have predicted functions consistent with current knowledge of CHC metabolism. However, we found first-time evidence for a fatty acid amide hydrolase also influencing CHC profile composition. In situ hybridization experiments furthermore suggest trophocytes participating in CHC biosynthesis. Our results set the base for experimental CHC profile manipulation in Hymenoptera and imply that the evolutionary origin of CHC biosynthesis predates the arthropods' colonization of land.


2021 ◽  
Author(s):  
Nathan D Lawson ◽  
Yu-Huan Shih ◽  
Ann Grosse ◽  
Daneal Portman ◽  
Feston Idrizi

Pericytes reside in capillary beds where they share a basement membrane with endothelial cells and regulate their function. However, little is known about embryonic pericyte development, in part, due to lack of specific molecular markers and genetic tools. Here, we applied single cell RNA-sequencing (scRNA-seq) of platelet derived growth factor beta (pdgfrb)-positive cells to molecularly characterize pericytes in zebrafish larvae. scRNA-seq revealed zebrafish cells expressing mouse pericyte gene orthologs while comparison to bulk RNA-seq from wild type and pdgfrb mutant larvae further refined a pericyte geneset. Subsequent integration with mouse pericyte scRNA-seq profiles revealed a core set of conserved pericyte genes. Using transgenic reporter lines, we validated pericyte expression of two genes identified in our analysis: NDUFA4 mitochondrial complex associated like 2a (ndufa4l2a), and potassium voltage-gated channel, Isk-related family, member 4 (kcne4). Both reporter lines exhibited pericyte expression in multiple anatomical locations, while kcne4 was also detected in a subset of vascular smooth muscle cells. Thus, our integrated molecular analysis revealed a molecular profile for zebrafish pericytes and allowed us to develop new tools to observe these cells in vivo.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1215
Author(s):  
Yichen Li ◽  
Zhuo Xing ◽  
Tao Yu ◽  
Annie Pao ◽  
Marcel Daadi ◽  
...  

Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.


2021 ◽  
Author(s):  
Giovanni Annona ◽  
Iori Sato ◽  
Juan Pascual-Anaya ◽  
Ingo Braasch ◽  
Randal Voss ◽  
...  

Nitric oxide (NO) is an ancestral key signaling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Although our knowledge of nitric oxide synthases (Nos), the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified repertoire of nos gene orthologs in fish with respect to tetrapods remains a puzzle. The recent identification of nos3 in the ray-finned fish spotted gar, which was considered lost in the ray-finned fish lineage, changed this perspective. This prompted us to explore nos gene evolution and expression in depth, surveying vertebrate species representing key evolutionary nodes. This study provides noteworthy findings: first, nos2 experienced several lineage-specific gene duplications and losses. Second, nos3 was found to be lost independently in two different teleost lineages, Elopomorpha and Clupeocephala. Third, the expression of at least one nos paralog in the gills of developing shark, bichir, sturgeon, and gar but not in arctic lamprey, suggest that nos expression in this organ likely arose in the last common ancestor of gnathostomes. These results provide a framework for continuing research on nos genes roles, highlighting subfunctionalization and reciprocal loss of function that occurred in different lineages during vertebrate genome duplications.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wim H. Quint ◽  
Kirke C. D. Tadema ◽  
Erik de Vrieze ◽  
Rachel M. Lukowicz ◽  
Sanne Broekman ◽  
...  

AbstractMyopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber M. Paul ◽  
Eliah G. Overbey ◽  
Willian A. da Silveira ◽  
Nathaniel Szewczyk ◽  
Nina C. Nishiyama ◽  
...  

AbstractUsing a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-β receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 469
Author(s):  
Alon Botzer ◽  
Yoram Finkelstein ◽  
Ron Unger

Blood pressure (BP) is determined by several physiological factors that are regulated by a range of complex neural, endocrine, and paracrine mechanisms. This study examined a collection of 198 human genes related to BP regulation, in the biological processes and functional prisms, as well as gene expression in organs and tissues. This was made in conjunction with an orthology analysis performed in 19 target organisms along the phylogenetic tree. We have demonstrated that transport and signaling, as well as homeostasis in general, are the most prevalent biological processes associated with BP gene orthologs across the examined species. We showed that these genes and their orthologs are expressed primarily in the kidney and adrenals of complex organisms (e.g., high order vertebrates) and in the nervous system of low complexity organisms (e.g., flies, nematodes). Furthermore, we have determined that basic functions such as ion transport are ancient and appear in all organisms, while more complex regulatory functions, such as control of extracellular volume emerged in high order organisms. Thus, we conclude that the complex system of BP regulation evolved from simpler components that were utilized to maintain specific homeostatic functions that play key roles in existence and survival of organisms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Abdellah Barakate ◽  
Jamie Orr ◽  
Miriam Schreiber ◽  
Isabelle Colas ◽  
Dominika Lewandowska ◽  
...  

In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley (Hordeum vulgare) anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene–zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I–tetrad. Our analysis reveals that the pre-meiotic anthers are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologs showed differential transcript abundance in at least one stage or tissue comparison. Argonautes, E3 ubiquitin ligases, and lys48 specific de-ubiquitinating enzymes were enriched in prophase I meiocyte samples. These developmental, time-resolved transcriptomes demonstrate remarkable stability in transcript abundance in meiocytes throughout prophase I after the initial and substantial reprogramming at meiosis entry and the complexity of the regulatory networks involved in early meiotic processes.


2020 ◽  
Vol 8 (12) ◽  
pp. 1919
Author(s):  
Elina Laanto ◽  
Janne J. Ravantti ◽  
Lotta-Riina Sundberg

The role of prophages in the evolution, diversification, or virulence of the fish pathogen Flavobacterium columnare has not been studied thus far. Here, we describe a functional spontaneously inducing prophage fF4 from the F. columnare type strain ATCC 23463, which is not detectable with commonly used prophage search methods. We show that this prophage type has a global distribution and is present in strains isolated from Finland, Thailand, Japan, and North America. The virions of fF4 are myoviruses with contractile tails and infect only bacterial strains originating from Northern Finland. The fF4 resembles transposable phages by similar genome organization and several gene orthologs. Additional bioinformatic analyses reveal several species in the phylum Bacteroidetes that host a similar type of putative prophage, including bacteria that are important animal and human pathogens. Furthermore, a survey of F. columnare Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers indicate a shared evolutionary history between F. columnare strains and the fF4 phage, and another putative prophage in the F. columnare strain ATCC 49512, named p49512. First, CRISPR spacer content from the two CRISPR loci (types II-C and VI-B) of the fF4 lysogen F. columnare ATCC 23463 revealed a phage terminase protein-matching spacer in the VI-B locus. This spacer is also present in two Chinese F. columnare strains. Second, CRISPR analysis revealed four F. columnare strains that contain unique spacers targeting different regions of the putative prophage p49512 in the F. columnare strain ATCC 49512, despite the geographical distance or genomovar of the different strains. This suggests a common ancestry for the F. columnare prophages and different host strains.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Irina V. Poverennaya ◽  
Nadezhda A. Potapova ◽  
Sergey A. Spirin

Abstract Background Eukaryotic protein-coding genes consist of exons and introns. Exon–intron borders are conserved between species and thus their changes might be observed only on quite long evolutionary distances. One of the rarest types of change, in which intron relocates over a short distance, is called "intron sliding", but the reality of this event has been debated for a long time. The main idea of a search for intron sliding is to use the most accurate genome annotation and genome sequence, as well as high-quality transcriptome data. We applied them in a search for sliding introns in mammals in order to widen knowledge about the presence or absence of such phenomena in this group. Results We didn’t find any significant evidence of intron sliding in the primate group (human, chimpanzee, rhesus macaque, crab-eating macaque, green monkey, marmoset). Only one possible intron sliding event supported by a set of high quality transcriptomes was observed between EIF1AX human and sheep gene orthologs. Also, we checked a list of previously observed intron sliding events in mammals and showed that most likely they are artifacts of genome annotations and are not shown in subsequent annotation versions as well as are not supported by transcriptomic data. Conclusions We assume that intron sliding is indeed a very rare evolutionary event if it exists at all. Every case of intron sliding needs a lot of supportive data for detection and confirmation.


Sign in / Sign up

Export Citation Format

Share Document