scholarly journals An improved mitochondrial reference genome for Arabidopsis thaliana Col-0

2018 ◽  
Author(s):  
Daniel B. Sloan ◽  
Zhiqiang Wu ◽  
Joel Sharbrough

Arabidopsis thaliana remains the foremost model system for plant genetics and genomics, and researchers rely on the accuracy of its genomic resources. The first completely sequenced angiosperm mitochondrial genome was obtained from A. thaliana C24 (Unseld et al., 1997), and more recent efforts have produced additional A. thaliana reference genomes, including one for Col-0, the most widely used ecotype (Davila et al., 2011). These studies were based on older DNA sequencing methods, making them subject to errors associated with lower levels of sequencing coverage or the extremely short read lengths produced by early-generation Illumina technologies. Indeed, although the more recently published A. thaliana mitochondrial reference genome sequences made substantial progress in improving upon earlier versions, they still have high error rates. By comparing publicly available Illumina sequence data to the A. thaliana Col-0 reference genome, we found that it contains a sequence error every 2.4 kb on average, including 57 SNPs, 96 indels (up to 901 bp in size), and a large repeat-mediated rearrangement. Most of these errors appear to have been carried over from the original A. thaliana mitochondrial genome sequence by reference-based assembly approaches, which has misled subsequent studies of plant mitochondrial mutation and molecular evolution by giving the false impression that the errors are naturally occurring variants present in multiple ecotypes. Building on the progress made by previous researchers, we provide a corrected reference sequence that we hope will serve as a useful community resource for future investigations in the field of plant mitochondrial genetics.

2016 ◽  
Vol 1 ◽  
pp. 4 ◽  
Author(s):  
Sarah Auburn ◽  
Ulrike Böhme ◽  
Sascha Steinbiss ◽  
Hidayat Trimarsanto ◽  
Jessica Hostetler ◽  
...  

Plasmodium vivax is now the predominant cause of malaria in the Asia-Pacific, South America and Horn of Africa. Laboratory studies of this species are constrained by the inability to maintain the parasite in continuous ex vivo culture, but genomic approaches provide an alternative and complementary avenue to investigate the parasite’s biology and epidemiology. To date, molecular studies of P. vivax have relied on the Salvador-I reference genome sequence, derived from a monkey-adapted strain from South America. However, the Salvador-I reference remains highly fragmented with over 2500 unassembled scaffolds.  Using high-depth Illumina sequence data, we assembled and annotated a new reference sequence, PvP01, sourced directly from a patient from Papua Indonesia. Draft assemblies of isolates from China (PvC01) and Thailand (PvT01) were also prepared for comparative purposes. The quality of the PvP01 assembly is improved greatly over Salvador-I, with fragmentation reduced to 226 scaffolds. Detailed manual curation has ensured highly comprehensive annotation, with functions attributed to 58% core genes in PvP01 versus 38% in Salvador-I. The assemblies of PvP01, PvC01 and PvT01 are larger than that of Salvador-I (28-30 versus 27 Mb), owing to improved assembly of the subtelomeres.  An extensive repertoire of over 1200 Plasmodium interspersed repeat (pir) genes were identified in PvP01 compared to 346 in Salvador-I, suggesting a vital role in parasite survival or development. The manually curated PvP01 reference and PvC01 and PvT01 draft assemblies are important new resources to study vivax malaria. PvP01 is maintained at GeneDB and ongoing curation will ensure continual improvements in assembly and annotation quality.


Author(s):  
Liang Cheng ◽  
Xudong Han ◽  
Zijun Zhu ◽  
Changlu Qi ◽  
Ping Wang ◽  
...  

Abstract Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the COVID-19 pandemic has spread rapidly worldwide. Due to the limited virus strains, few key mutations that would be very important with the evolutionary trends of virus genome were observed in early studies. Here, we downloaded 1809 sequence data of SARS-CoV-2 strains from GISAID before April 2020 to identify mutations and functional alterations caused by these mutations. Totally, we identified 1017 nonsynonymous and 512 synonymous mutations with alignment to reference genome NC_045512, none of which were observed in the receptor-binding domain (RBD) of the spike protein. On average, each of the strains could have about 1.75 new mutations each month. The current mutations may have few impacts on antibodies. Although it shows the purifying selection in whole-genome, ORF3a, ORF8 and ORF10 were under positive selection. Only 36 mutations occurred in 1% and more virus strains were further analyzed to reveal linkage disequilibrium (LD) variants and dominant mutations. As a result, we observed five dominant mutations involving three nonsynonymous mutations C28144T, C14408T and A23403G and two synonymous mutations T8782C, and C3037T. These five mutations occurred in almost all strains in April 2020. Besides, we also observed two potential dominant nonsynonymous mutations C1059T and G25563T, which occurred in most of the strains in April 2020. Further functional analysis shows that these mutations decreased protein stability largely, which could lead to a significant reduction of virus virulence. In addition, the A23403G mutation increases the spike-ACE2 interaction and finally leads to the enhancement of its infectivity. All of these proved that the evolution of SARS-CoV-2 is toward the enhancement of infectivity and reduction of virulence.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 579-585 ◽  
Author(s):  
Volker Knoop ◽  
Michael Unseld ◽  
Joachim Marienfeld ◽  
Petra Brandt ◽  
Sabine Sünkel ◽  
...  

Abstract Several retrotransposon fragments are integrated in the mitochondrial genome of Arabidopsis thaliana. These insertions are derived from all three classes of nuclear retrotransposons, the Tyl/copia, Ty3/gypsy- and non-LTR/LINE-families. Members of the Ty3/gypsy group of elements have not yet been identified in the nuclear genome of Arabidopsis. The varying degrees of similarity with nuclear elements and the dispersed locations of the sequences in the mitochondrial genome suggest numerous independent transfer-insertion events in the evolutionary history of this plant mitochondrial genome. Overall, we estimate remnants of retrotransposons to cover ≥5% of the mitochondrial genome in Arabidopsis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kelly E. Williams ◽  
Damian M. Menning ◽  
Eric J. Wald ◽  
Sandra L. Talbot ◽  
Kumi L. Rattenbury ◽  
...  

Abstract Objectives Dall’s sheep (Ovis dalli dalli) are important herbivores in the mountainous ecosystems of northwestern North America, and recent declines in some populations have sparked concern. Our aim was to improve capabilities for fecal metabarcoding diet analysis of Dall’s sheep and other herbivores by contributing new sequence data for arctic and alpine plants. This expanded reference library will provide critical reference sequence data that will facilitate metabarcoding diet analysis of Dall’s sheep and thus improve understanding of plant-animal interactions in a region undergoing rapid climate change. Data description We provide sequences for the chloroplast rbcL gene of 16 arctic-alpine vascular plant species that are known to comprise the diet of Dall’s sheep. These sequences contribute to a growing reference library that can be used in diet studies of arctic herbivores.


2018 ◽  
Vol 20 (4) ◽  
pp. 1542-1559 ◽  
Author(s):  
Damla Senol Cali ◽  
Jeremie S Kim ◽  
Saugata Ghose ◽  
Can Alkan ◽  
Onur Mutlu

Abstract Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast, to overcome the high error rates of the nanopore sequencing technology.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Krisztian Buza ◽  
Bartek Wilczynski ◽  
Norbert Dojer

Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used.Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge.Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software.


2019 ◽  
Author(s):  
Mathias Kuhring ◽  
Joerg Doellinger ◽  
Andreas Nitsche ◽  
Thilo Muth ◽  
Bernhard Y. Renard

AbstractUntargeted accurate strain-level classification of a priori unidentified organisms using tandem mass spectrometry is a challenging task. Reference databases often lack taxonomic depth, limiting peptide assignments to the species level. However, the extension with detailed strain information increases runtime and decreases statistical power. In addition, larger databases contain a higher number of similar proteomes.We present TaxIt, an iterative workflow to address the increasing search space required for MS/MS-based strain-level classification of samples with unknown taxonomic origin. TaxIt first applies reference sequence data for initial identification of species candidates, followed by automated acquisition of relevant strain sequences for low level classification. Furthermore, proteome similarities resulting in ambiguous taxonomic assignments are addressed with an abundance weighting strategy to improve candidate confidence.We apply our iterative workflow on several samples of bacterial and viral origin. In comparison to non-iterative approaches using unique peptides or advanced abundance correction, TaxIt identifies microbial strains correctly in all examples presented (with one tie), thereby demonstrating the potential for untargeted and deeper taxonomic classification. TaxIt makes extensive use of public, unrestricted and continuously growing sequence resources such as the NCBI databases and is available under open-source license at https://gitlab.com/rki_bioinformatics.


2020 ◽  
Author(s):  
Brendan N. Reid ◽  
Rachel L. Moran ◽  
Christopher J. Kopack ◽  
Sarah W. Fitzpatrick

AbstractResearchers studying non-model organisms have an increasing number of methods available for generating genomic data. However, the applicability of different methods across species, as well as the effect of reference genome choice on population genomic inference, are still difficult to predict in many cases. We evaluated the impact of data type (whole-genome vs. reduced representation) and reference genome choice on data quality and on population genomic and phylogenomic inference across several species of darters (subfamily Etheostomatinae), a highly diverse radiation of freshwater fish. We generated a high-quality reference genome and developed a hybrid RADseq/sequence capture (Rapture) protocol for the Arkansas darter (Etheostoma cragini). Rapture data from 1900 individuals spanning four darter species showed recovery of most loci across darter species at high depth and consistent estimates of heterozygosity regardless of reference genome choice. Loci with baits spanning both sides of the restriction enzyme cut site performed especially well across species. For low-coverage whole-genome data, choice of reference genome affected read depth and inferred heterozygosity. For similar amounts of sequence data, Rapture performed better at identifying fine-scale genetic structure compared to whole-genome sequencing. Rapture loci also recovered an accurate phylogeny for the study species and demonstrated high phylogenetic informativeness across the evolutionary history of the genus Etheostoma. Low cost and high cross-species effectiveness regardless of reference genome suggest that Rapture and similar sequence capture methods may be worthwhile choices for studies of diverse species radiations.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Phelim Bradley ◽  
N. Claire Gordon ◽  
Timothy M. Walker ◽  
Laura Dunn ◽  
Simon Heys ◽  
...  

Abstract The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor’) that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes.


Sign in / Sign up

Export Citation Format

Share Document