scholarly journals NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

2018 ◽  
Author(s):  
Fangping Wan ◽  
Lixiang Hong ◽  
An Xiao ◽  
Tao Jiang ◽  
Jianyang Zeng

AbstractMotivationAccurately predicting drug-target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks.ResultsInspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks (CNNs) to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g., compound-protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning.Availability and implementationThe source code and data used in NeoDTI are available at: https://github.com/FangpingWan/[email protected] informationSupplementary data are available at Bioinformatics online.

2017 ◽  
Author(s):  
Yunan Luo ◽  
Xinbin Zhao ◽  
Jingtian Zhou ◽  
Jinglin Yang ◽  
Yanqing Zhang ◽  
...  

AbstractThe emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. Systematic integration of these heterogeneous data not only serves as a promising tool for identifying new drug-target interactions (DTIs), which is an important step in drug development, but also provides a more complete understanding of the molecular mechanisms of drug action. In this work, we integrate diverse drug-related information, including drugs, proteins, diseases and side-effects, together with their interactions, associations or similarities, to construct a heterogeneous network with 12,015 nodes and 1,895,445 edges. We then develop a new computational pipeline, called DTINet, to predict novel drug-target interactions from the constructed heterogeneous network. Specifically, DTINet focuses on learning a low-dimensional vector representation of features for each node, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then predicts the likelihood of a new DTI based on these representations via a vector space projection scheme. DTINet achieves substantial performance improvement over other state-of-the-art methods for DTI prediction. Moreover, we have experimentally validated the novel interactions between three drugs and the cyclooxygenase (COX) protein family predicted by DTINet, and demonstrated the new potential applications of these identified COX inhibitors in preventing inflammatory diseases. These results indicate that DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug-target interactions and repurpose existing drugs. The source code of DTINet and the input heterogeneous network data can be downloaded from http://github.com/luoyunan/DTINet.


2020 ◽  
Vol 36 (9) ◽  
pp. 2805-2812 ◽  
Author(s):  
Xiangxiang Zeng ◽  
Siyi Zhu ◽  
Yuan Hou ◽  
Pengyue Zhang ◽  
Lang Li ◽  
...  

Abstract Motivation Systematic identification of molecular targets among known drugs plays an essential role in drug repurposing and understanding of their unexpected side effects. Computational approaches for prediction of drug–target interactions (DTIs) are highly desired in comparison to traditional experimental assays. Furthermore, recent advances of multiomics technologies and systems biology approaches have generated large-scale heterogeneous, biological networks, which offer unexpected opportunities for network-based identification of new molecular targets among known drugs. Results In this study, we present a network-based computational framework, termed AOPEDF, an arbitrary-order proximity embedded deep forest approach, for prediction of DTIs. AOPEDF learns a low-dimensional vector representation of features that preserve arbitrary-order proximity from a highly integrated, heterogeneous biological network connecting drugs, targets (proteins) and diseases. In total, we construct a heterogeneous network by uniquely integrating 15 networks covering chemical, genomic, phenotypic and network profiles among drugs, proteins/targets and diseases. Then, we build a cascade deep forest classifier to infer new DTIs. Via systematic performance evaluation, AOPEDF achieves high accuracy in identifying molecular targets among known drugs on two external validation sets collected from DrugCentral [area under the receiver operating characteristic curve (AUROC) = 0.868] and ChEMBL (AUROC = 0.768) databases, outperforming several state-of-the-art methods. In a case study, we showcase that multiple molecular targets predicted by AOPEDF are associated with mechanism-of-action of substance abuse disorder for several marketed drugs (such as aripiprazole, risperidone and haloperidol). Availability and implementation Source code and data can be downloaded from https://github.com/ChengF-Lab/AOPEDF. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 ◽  
Author(s):  
Genís Calderer ◽  
Marieke L. Kuijjer

Networks are useful tools to represent and analyze interactions on a large, or genome-wide scale and have therefore been widely used in biology. Many biological networks—such as those that represent regulatory interactions, drug-gene, or gene-disease associations—are of a bipartite nature, meaning they consist of two different types of nodes, with connections only forming between the different node sets. Analysis of such networks requires methodologies that are specifically designed to handle their bipartite nature. Community structure detection is a method used to identify clusters of nodes in a network. This approach is especially helpful in large-scale biological network analysis, as it can find structure in networks that often resemble a “hairball” of interactions in visualizations. Often, the communities identified in biological networks are enriched for specific biological processes and thus allow one to assign drugs, regulatory molecules, or diseases to such processes. In addition, comparison of community structures between different biological conditions can help to identify how network rewiring may lead to tissue development or disease, for example. In this mini review, we give a theoretical basis of different methods that can be applied to detect communities in bipartite biological networks. We introduce and discuss different scores that can be used to assess the quality of these community structures. We then apply a wide range of methods to a drug-gene interaction network to highlight the strengths and weaknesses of these methods in their application to large-scale, bipartite biological networks.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Cheng Yan ◽  
Jianxin Wang ◽  
Wei Lan ◽  
Fang-Xiang Wu ◽  
Yi Pan

It is well known that drug discovery for complex diseases via biological experiments is a time-consuming and expensive process. Alternatively, the computational methods provide a low-cost and high-efficiency way for predicting drug-target interactions (DTIs) from biomolecular networks. However, the current computational methods mainly deal with DTI predictions of known drugs; there are few methods for large-scale prediction of failed drugs and new chemical entities that are currently stored in some biological databases may be effective for other diseases compared with their originally targeted diseases. In this study, we propose a method (called SDTRLS) which predicts DTIs through RLS-Kron model with chemical substructure similarity fusion and Gaussian Interaction Profile (GIP) kernels. SDTRLS can be an effective predictor for targets of old drugs, failed drugs, and new chemical entities from large-scale biomolecular network databases. Our computational experiments show that SDTRLS outperforms the state-of-the-art SDTNBI method; specifically, in the G protein-coupled receptors (GPCRs) external validation, the maximum and the average AUC values of SDTRLS are 0.842 and 0.826, respectively, which are superior to those of SDTNBI, which are 0.797 and 0.766, respectively. This study provides an important basis for new drug development and drug repositioning based on biomolecular networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryuichi Sakate ◽  
Tomonori Kimura

AbstractDrug development for rare and intractable diseases has been challenging for decades due to the low prevalence and insufficient information on these diseases. Drug repositioning is increasingly being used as a promising option in drug development. We aimed to analyze the trend of drug repositioning and inter-disease drug repositionability among rare and intractable diseases. We created a list of rare and intractable diseases based on the designated diseases in Japan. Drug information extracted from clinical trial data were integrated with information of drug target genes, which represent the mechanism of drug action. We obtained 753 drugs and 551 drug target genes from 8307 clinical trials for 189 diseases or disease groups. Trend analysis of drug sharing between a disease pair revealed that 1676 drug repositioning events occurred in 4401 disease pairs. A score, Rgene, was invented to investigate the proportion of drug target genes shared between a disease pair. Annual changes of Rgene corresponded to the trend of drug repositioning and predicted drug repositioning events occurring within a year or two. Drug target gene-based analyses well visualized the drug repositioning landscape. This approach facilitates drug development for rare and intractable diseases.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008464
Author(s):  
Daniel Rivas-Barragan ◽  
Sarah Mubeen ◽  
Francesc Guim Bernat ◽  
Martin Hofmann-Apitius ◽  
Daniel Domingo-Fernández

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.


2020 ◽  
Author(s):  
Daniel Rivas-Barragan ◽  
Sarah Mubeen ◽  
Francesc Guim Bernat ◽  
Martin Hofmann-Apitius ◽  
Daniel Domingo-Fernández

AbstractElucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 377 ◽  
Author(s):  
Hanbi Lee ◽  
Wankyu Kim

Uncovering drug-target interactions (DTIs) is pivotal to understand drug mode-of-action (MoA), avoid adverse drug reaction (ADR), and seek opportunities for drug repositioning (DR). For decades, in silico predictions for DTIs have largely depended on structural information of both targets and compounds, e.g., docking or ligand-based virtual screening. Recently, the application of deep neural network (DNN) is opening a new path to uncover novel DTIs for thousands of targets. One important question is which features for targets are most relevant to DTI prediction. As an early attempt to answer this question, we objectively compared three canonical target features extracted from: (i) the expression profiles by gene knockdown (GEPs); (ii) the protein–protein interaction network (PPI network); and (iii) the pathway membership (PM) of a target gene. For drug features, the large-scale drug-induced transcriptome dataset, or the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 dataset was used. All these features are closely related to protein function or drug MoA, of which utility is only sparsely investigated. In particular, few studies have compared the three types of target features in DNN-based DTI prediction under the same evaluation scheme. Among the three target features, the PM and the PPI network show similar performances superior to GEPs. DNN models based on both features consistently outperformed other machine learning methods such as naïve Bayes, random forest, or logistic regression.


2020 ◽  
Vol 29 (01) ◽  
pp. 2050001
Author(s):  
Mina Samizadeh ◽  
Behrouz Minaei-Bidgoli

Drug discovery is a complicated, time-consuming and expensive process. The cost for each new molecular entity (NME) is estimated at $1.8 billion. Furthermore, for a new drug to be FDA approved it often takes nearly a decade and approximately 20 new drugs being approved by the US Food and Drug Administration (FDA) each year. Accurately predicting drug-target interactions (DTIs) by computational methods is an important area of drug research, which brings about a broad prospect for fast and low-risk drug development. By accurate prediction of drugs and targets interactions scientists can scale-down huge experimental space and reduce the costs and help to faster drug development as well as predicting the side effects and potential function of new drugs. Many approaches have been taken by researchers to solve DTI problem and enhance the accuracy of methods. State-of-the-art approaches are based on various techniques, such as deep learning methods-like stacked auto-encoder-, matrix factorization, network inference, and ensemble methods. In this work, we have taken a new approach based on node embedding in a heterogeneous interaction network to obtain the representation of each node in the interaction network and then use a binary classifier such as logistic regression to solve this prominent problem in the pharmaceutical industry. Most introduced network-based methods use a homogeneous network of interactions as their input data whereas in the real word problem there exist other informative networks to help to enhance the prediction and by considering the homogeneous networks we lose some precious network information. Hence, in this work, we have tried to work on the heterogeneous network and have improved the accuracy of methods in comparison to baseline methods.


Sign in / Sign up

Export Citation Format

Share Document