scholarly journals The integrated stress response regulates BMP signaling through effects on translation

2018 ◽  
Author(s):  
Elke Malzer ◽  
Caia S. Dominicus ◽  
Joseph E. Chambers ◽  
Souradip Mookerjee ◽  
Stefan J. Marciniak

AbstractDevelopmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Mutations of the ISR kinase GCN2 have been implicated in the development of pulmonary arterial hypertension, a disorder known to be associated with defects of BMP signaling, but how the ISR and BMP signaling might interact is unknown. Here we show in Drosophila that GCN2 antagonises BMP signaling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impair developmental BMP signaling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signaling. Moreover, loss of d4E-BP, a target of crc, augments BMP signaling in vitro and rescues tissue development in vivo. These results identify a novel mechanism by which the ISR modulates BMP signaling during development. Since abnormalities of both GCN2 and BMP signaling lead to pulmonary hypertension, these findings may have wider relevance for the development of therapies for this disease.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


2019 ◽  
Vol 244 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Gexiang Cai ◽  
Jingjing Liu ◽  
Meibin Wang ◽  
Lihuang Su ◽  
Mengsi Cai ◽  
...  

Fibroblast growth factor 21 (FGF21), a primarily liver-derived endocrine factor, has the beneficial effect of protecting blood vessels. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear transcription factor, has been reported to effectively inhibit pulmonary hypertension (PH). The purpose of this study is to investigate the role of FGF21 in hypoxia-induced PH (HPH) and explore the relationship between FGF21 and PPARγ in this disorder. Adult C57BL/6 mice were subjected to four weeks of hypoxia to establish a PH model. The effects of FGF21 and PPARγ agonists and antagonists were investigated in HPH mice, as well as the relationship between FGF21 and PPARγ in this model. Moreover, we investigated the underlying mechanisms of this relationship between FGF21 and PPARγ in vivo and in vitro. In vivo, we found that hypoxia resulted in pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial remodeling, and pulmonary arterial collagen deposition. Furthermore, hypoxia decreased FGF21 and PPARγ levels. These changes were reversed by exogenous FGF21 and a PPARγ agonist and were further enhanced by a PPARγ antagonist. The hypoxia-induced decrease in β-klotho (KLB) expression was improved by the PPARγ agonist and further reduced by the PPARγ antagonist. Exogenous FGF21 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation (Thr172) and PPARγ coactivator-1α (PGC-1α) expression in PH mouse lung homogenates. In vitro, we found that knockdown of AMPK or using an AMPK antagonist inhibited the FGF21-mediated up-regulation of PPARγ expression, and the PPARγ-mediated up-regulation of FGF21 expression was inhibited by knockdown of KLB. These results indicated that FGF21 exerts protective effects in inhibiting HPH. FGF21 and PPARγ mutually promote each other’s expression in HPH via the AMPK/PGC-1α pathway and KLB protein. Impact statement In this study, we reported for the first time that FGF21 alleviated hypoxia-induced pulmonary hypertension through attenuation of increased pulmonary arterial pressure, pulmonary arterial remodeling and collagen deposition in vivo, and we confirmed the mutual promotion of FGF21 and PPARγ in hypoxia-induced pulmonary hypertension. Additionally, we found that FGF21 and PPARγ mutually promote each other’s expression via the AMPK/PGC-1α pathway and KLB protein in vitro and in vivo. Pulmonary hypertension is a progressive and serious pathological phenomenon with a poor prognosis, and current therapies are highly limited. Our results provide novel insight into potential clinical therapies for pulmonary hypertension and establish the possibility of using this drug combination and potential dosage reductions in clinical settings.


2020 ◽  
Author(s):  
Michael Schoof ◽  
Morgane Boone ◽  
Lan Wang ◽  
Rosalie Lawrence ◽  
Adam Frost ◽  
...  

AbstractThe integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2’s nucleotide exchange factor eIF2B, a two-fold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B’s α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing an allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-EM structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into ‘conjoined tetramers’ with greatly diminished activity. Thus, ISRIB’s effects in disease models could arise from eIF2B decamer stabilization, allosteric modulation, or both.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael Schoof ◽  
Morgane Boone ◽  
Lan Wang ◽  
Rosalie Lawrence ◽  
Adam Frost ◽  
...  

The integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2's nucleotide exchange factor eIF2B, a two-fold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B's α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-EM structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into 'conjoined tetramers' with diminished substrate binding and enzymatic activity. Canonical eIF2-P-driven ISR activation thus arises due to this change in eIF2B's conformational state.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1477
Author(s):  
Lukas Roubenne ◽  
Roger Marthan ◽  
Bruno Le Le Grand ◽  
Christelle Guibert

Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K+ channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.


2014 ◽  
Vol 92 (1) ◽  
pp. 58-69 ◽  
Author(s):  
Xian-Wei Li ◽  
Jie Du ◽  
Gao-Yun Hu ◽  
Chang-Ping Hu ◽  
Dai Li ◽  
...  

Fluorofenidone (AKF-PD) is a novel pyridone derivate that targets transforming growth factor-β1 (TGF-β1) signaling. Previous studies have proven that AKF-PD functions as an antifibrotic agent in pulmonary fibrosis and renal fibrosis models. Activated TGF-β1 signaling is thought to be a major feature of pulmonary hypertension (PH). TGF-β1 exerts powerful pro-proliferation effects on pulmonary arterial smooth muscle cells (PASMCs), and hence, prompts vascular remodeling. This study is designed to investigate the effect of AKF-PD on vascular remodeling in a rat model of hypoxia-induced PH. PH was induced in rats by 4 weeks of hypoxia. The expression of TGF-β1, collagen I, and collagen III was analyzed by ELISA, immunohistochemistry, real-time PCR, or Western blot. Proliferation of cultured PASMCs was determined by the BrdU incorporation method and flow cytometry. The results showed that AKF-PD treatment (0.5 or 1.0 g·(kg body mass)·d−1) for 4 weeks attenuated pulmonary vascular remodeling and improved homodynamic parameters. TGF-β1 level was significantly down-regulated by AKF-PD both in vivo and in vitro. Furthermore, hypoxia- and TGF-β1-induced PASMC proliferation and collagen expression were both significantly suppressed by AKF-PD. These results suggest that AKF-PD ameliorates the progression of PH induced by hypoxia in rats through its regulation of TGF-β1 expression, PASMC proliferation, and the extracellular matrix.


2019 ◽  
Vol 11 (516) ◽  
pp. eaax2863 ◽  
Author(s):  
David Sharon ◽  
Severine Cathelin ◽  
Sara Mirali ◽  
Justin M. Di Trani ◽  
David J. Yanofsky ◽  
...  

Venetoclax is a specific B cell lymphoma 2 (BCL-2) inhibitor with promising activity against acute myeloid leukemia (AML), but its clinical efficacy as a single agent or in combination with hypomethylating agents (HMAs), such as azacitidine, is hampered by intrinsic and acquired resistance. Here, we performed a genome-wide CRISPR knockout screen and found that inactivation of genes involved in mitochondrial translation restored sensitivity to venetoclax in resistant AML cells. Pharmacologic inhibition of mitochondrial protein synthesis with antibiotics that target the ribosome, including tedizolid and doxycycline, effectively overcame venetoclax resistance. Mechanistic studies showed that both tedizolid and venetoclax suppressed mitochondrial respiration, with the latter demonstrating inhibitory activity against complex I [nicotinamide adenine dinucleotide plus hydrogen (NADH) dehydrogenase] of the electron transport chain (ETC). The drugs cooperated to activate a heightened integrated stress response (ISR), which, in turn, suppressed glycolytic capacity, resulting in adenosine triphosphate (ATP) depletion and subsequent cell death. Combination treatment with tedizolid and venetoclax was superior to either agent alone in reducing leukemic burden in mice engrafted with treatment-resistant human AML. The addition of tedizolid to azacitidine and venetoclax further enhanced the killing of resistant AML cells in vitro and in vivo. Our findings demonstrate that inhibition of mitochondrial translation is an effective approach to overcoming venetoclax resistance and provide a rationale for combining tedizolid, azacitidine, and venetoclax as a triplet therapy for AML.


2020 ◽  
Vol 10 (2) ◽  
pp. 204589402092281 ◽  
Author(s):  
Kathryn S. Wilson ◽  
Hanna Buist ◽  
Kornelija Suveizdyte ◽  
John T. Liles ◽  
Grant R. Budas ◽  
...  

Pulmonary arterial hypertension, group 1 of the pulmonary hypertension disease family, involves pulmonary vascular remodelling, right ventricular dysfunction and cardiac failure. Oxidative stress, through activation of mitogen-activated protein kinases is implicated in these changes. Inhibition of apoptosis signal-regulating kinase 1, an apical mitogen-activated protein kinase, prevented pulmonary arterial hypertension developing in rodent models. Here, we investigate apoptosis signal-regulating kinase 1 in pulmonary arterial hypertension by examining the impact that its inhibition has on the molecular and cellular signalling in established disease. Apoptosis signal-regulating kinase 1 inhibition was investigated in in vivo pulmonary arterial hypertension and in vitro pulmonary hypertension models. In the in vivo model, male Sprague Dawley rats received a single subcutaneous injection of Sugen SU5416 (20 mg/kg) prior to two weeks of hypobaric hypoxia (380 mmHg) followed by three weeks normoxia (Sugen/hypoxic), then animals were either maintained for three weeks on control chow or one containing apoptosis signal-regulating kinase 1 inhibitor (100 mg/kg/day). Cardiovascular measurements were carried out. In the in vitro model, primary cultures of rat pulmonary artery fibroblasts and rat pulmonary artery smooth muscle cells were maintained in hypoxia (5% O2) and investigated for proliferation, migration and molecular signalling in the presence or absence of apoptosis signal-regulating kinase 1 inhibitor. Sugen/hypoxic animals displayed significant pulmonary arterial hypertension compared to normoxic controls at eight weeks. Apoptosis signal-regulating kinase 1 inhibitor decreased right ventricular systolic pressure to control levels and reduced muscularised vessels in lung tissue. Apoptosis signal-regulating kinase 1 inhibition was found to prevent hypoxia-induced proliferation, migration and cytokine release in rat pulmonary artery fibroblasts and also prevented rat pulmonary artery fibroblast-induced rat pulmonary artery smooth muscle cell migration and proliferation. Apoptosis signal-regulating kinase 1 inhibition reversed pulmonary arterial hypertension in the Sugen/hypoxic rat model. These effects may be a result of intrinsic changes in the signalling of adventitial fibroblast.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tatyana Novoyatleva ◽  
Nabham Rai ◽  
Baktybek Kojonazarov ◽  
Swathi Veeroju ◽  
Isabel Ben-Batalla ◽  
...  

AbstractPulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH.


2021 ◽  
Author(s):  
Risa Ramadhiani ◽  
Koji Ikeda ◽  
Kazuya Miyagawa ◽  
Gusty Rizky Teguh Ryanto ◽  
Naoki Tamada ◽  
...  

AbstractPulmonary arterial hypertension (PAH) is a fatal disease characterized by pathological pulmonary artery remodeling. Endothelial cells (EC) injury including DNA damage is critically involved in the vascular remodeling in PAH, and persistent injury leads to cellular senescence in ECs. Here, we show that EC senescence exacerbates pulmonary hypertension through Notch-mediated juxtacrine signaling. EC-specific progeroid mice that we recently generated showed exacerbated pulmonary hypertension after chronic hypoxia exposure, accompanied by the enhanced pulmonary arterial smooth muscle cells (PASMCs) proliferation in the distal pulmonary arteries. Mechanistically, we identified that senescent ECs highly expressed Notch ligands, and thus activated Notch signaling in PASMCs, leading to enhanced PASMCs proliferation and migration capacities. Consistently, pharmacological inhibition of Notch signaling attenuated the effects of senescent ECs on SMCs functions in vitro, and on the pulmonary hypertension in EC-specific progeroid mice in vivo. These data establish EC senescence as a crucial disease-modifying facor in PAH.


Sign in / Sign up

Export Citation Format

Share Document