scholarly journals Motor cortex is an input-driven dynamical system controlling dexterous movement

2018 ◽  
Author(s):  
Britton Sauerbrei ◽  
Jian-Zhong Guo ◽  
Matteo Mischiati ◽  
Wendy Guo ◽  
Mayank Kabra ◽  
...  

AbstractSkillful control of movement is central to our ability to sense and manipulate the world. A large body of work in nonhuman primates has demonstrated that motor cortex provides flexible, time-varying activity patterns that control the arm during reaching and grasping. Previous studies have suggested that these patterns are generated by strong local recurrent dynamics operating autonomously from inputs during movement execution. An alternative possibility is that motor cortex requires coordination with upstream brain regions throughout the entire movement in order to yield these patterns. Here, we developed an experimental preparation in the mouse to directly test these possibilities using optogenetics and electrophysiology during a skilled reach-to-grab-to-eat task. To validate this preparation, we first established that a specific, time-varying pattern of motor cortical activity was required to produce coordinated movement. Next, in order to disentangle the contribution of local recurrent motor cortical dynamics from external input, we optogenetically held the recurrent contribution constant, then observed how motor cortical activity recovered following the end of this perturbation. Both the neural responses and hand trajectory varied from trial to trial, and this variability reflected variability in external inputs. To directly probe the role of these inputs, we used optogenetics to perturb activity in the thalamus. Thalamic perturbation at the start of the trial prevented movement initiation, and perturbation at any stage of the movement prevented progression of the hand to the target; this demonstrates that input is required throughout the movement. By comparing motor cortical activity with and without thalamic perturbation, we were able to estimate the effects of external inputs on motor cortical population activity. Thus, unlike pattern-generating circuits that are local and autonomous, such as those in the spinal cord that generate left-right alternation during locomotion, the pattern generator for reaching and grasping is distributed across multiple, strongly-interacting brain regions.

2001 ◽  
Vol 13 (3) ◽  
pp. 306-318 ◽  
Author(s):  
Nicholas L. Port ◽  
Wolfgang Kruse ◽  
Daeyeol Lee ◽  
Apostolos P. Georgopoulos

The single-unit activity of 831 cells was recorded in the arm area of the motor cortex of tow monkeys while the monkeys intercepted a moving visual stimulus (interception task) or remained immobile during presentation of the same moving stimulus (no-go task). The moving target traveled on an oblique path from either lower corner of a screen toward the vertical meridian, and its movement time (0.5,1.0, or 1.5 sec) and velocity profile (accelerating, decelerating, or constant velocity) were pseudorandomly varied. The moving target had to be intercepted within 130 msec of target arrival at an interception point. By comparing motor cortical activity at the single-neuron tasks, we tested whether information about parameters of moving target is represented in the primary motor cortex to generate appropriate motor responses. A substantial number of neurons displayed modulation of their activity during the no-go task, and this activity was often affected by the stimulus parameters. These results suggest a role of motor cortex in specifying the timing of movement initiation based on information about target motion. In addition, there was a lack of systematic relation between the onset times of neural activity in the interception and no-go task, suggesting that processing of information concerning target motion and generation of hand movement occurs in parallel. Finally, the activity in the most motor cortical neurons was modulated according to an estimate of the time-to-target interception, raising the possibility that time-to-interception may be coded in the motor cortical activity.


2007 ◽  
Vol 97 (6) ◽  
pp. 3859-3867 ◽  
Author(s):  
Hiroshi Okamoto ◽  
Yoshikazu Isomura ◽  
Masahiko Takada ◽  
Tomoki Fukai

Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor–mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. When the variance of background input and the uniform weight of recurrent synapses are adequately tuned, we show that stochastic noise and reverberating synaptic input organize these bimodal changes into a sequence that exhibits graded population activity with a nearly constant slope. To test the validity of the proposed mechanism, we analyzed the graded activity of anterior cingulate cortex neurons in monkeys performing delayed conditional Go/No-go discrimination tasks. The delay-period activities of cingulate neurons exhibited bimodal activity patterns and trial-to-trial variability that are similar to those predicted by the proposed model.


2014 ◽  
Vol 112 (2) ◽  
pp. 411-429 ◽  
Author(s):  
Matthew D. Golub ◽  
Byron M. Yu ◽  
Andrew B. Schwartz ◽  
Steven M. Chase

Motor cortex plays a substantial role in driving movement, yet the details underlying this control remain unresolved. We analyzed the extent to which movement-related information could be extracted from single-trial motor cortical activity recorded while monkeys performed center-out reaching. Using information theoretic techniques, we found that single units carry relatively little speed-related information compared with direction-related information. This result is not mitigated at the population level: simultaneously recorded population activity predicted speed with significantly lower accuracy relative to direction predictions. Furthermore, a unit-dropping analysis revealed that speed accuracy would likely remain lower than direction accuracy, even given larger populations. These results suggest that the instantaneous details of single-trial movement speed are difficult to extract using commonly assumed coding schemes. This apparent paucity of speed information takes particular importance in the context of brain-machine interfaces (BMIs), which rely on extracting kinematic information from motor cortex. Previous studies have highlighted subjects' difficulties in holding a BMI cursor stable at targets. These studies, along with our finding of relatively little speed information in motor cortex, inspired a speed-dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances speed control by using prevalent directional signals, rather than requiring speed to be directly decoded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard Kalman filter in a closed-loop BMI task requiring stable stops at targets. BMI systems enabling stable stops will be more effective and user-friendly when translated into clinical applications.


2018 ◽  
Author(s):  
Ke Chen ◽  
Roberto Vincis ◽  
Alfredo Fontanini

ABSTRACTDysfunction of motor cortices is thought to contribute to motor disorders such as Parkinson’s disease (PD). However, little is known on the link between cortical dopaminergic loss, abnormalities in motor cortex neural activity and motor deficits. We address the role of dopamine in modulating motor cortical activity by focusing on the anterior lateral motor cortex (ALM) of mice performing a cued-licking task. We first demonstrate licking deficits and concurrent alterations of spiking activity in ALM of mice with unilateral depletion of dopaminergic neurons (i.e., mice injected with 6-OHDA into the medial forebrain bundle). Hemi-lesioned mice displayed delayed licking initiation, shorter duration of licking bouts, and lateral deviation of tongue protrusions. In parallel with these motor deficits, we observed a reduction in the prevalence of cue responsive neurons and altered preparatory activity. Acute and local blockade of D1 receptors in ALM recapitulated some of the key behavioral and neural deficits observed in hemi-lesioned mice. Altogether, our data show a direct relationship between cortical D1 receptor modulation, cue-evoked and preparatory activity in ALM, and licking initiation.SIGNIFICANCE STATEMENTThe link between dopaminergic signaling, motor cortical activity and motor deficits is not fully understood. This manuscript describes alterations in neural activity of the anterior lateral motor cortex (ALM) that correlate with licking deficits in mice with unilateral dopamine depletion or with intra-ALM infusion of dopamine antagonist. The findings emphasize the importance of cortical dopaminergic modulation in motor initiation. These results will appeal not only to researchers interested in cortical control of licking, but also to a broader audience interested in motor control and dopaminergic modulation in physiological and pathological conditions. Specifically, our data suggest that dopamine deficiency in motor cortex could play a role in the pathogenesis of the motor symptoms of Parkinson’s disease.


2021 ◽  
Author(s):  
Shreya Saxena ◽  
Abigail A. Russo ◽  
John P. Cunningham ◽  
Mark M. Churchland

AbstractLearned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling, and yielded quantitative and qualitative predictions. To evaluate predictions, we recorded motor cortex population activity during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.


2002 ◽  
Vol 87 (6) ◽  
pp. 3006-3017 ◽  
Author(s):  
Hervé Devanne ◽  
Leonardo G. Cohen ◽  
Nezha Kouchtir-Devanne ◽  
Charles Capaday

A large body of compelling but indirect evidence suggests that the motor cortex controls the different forelimb segments as a whole rather than individually. The purpose of this study was to obtain physiological evidence in behaving human subjects on the mode of operation of the primary motor cortex during coordinated movements of the forelimb. We approached this problem by studying a pointing movement involving the shoulder, elbow, wrist, and index finger as follows. Focal transcranial magnetic stimulation (TMS) was used to measure the input-output (I/O) curves—a measure of the corticospinal pathway excitability—of proximal (anterior deltoid, AD, and triceps brachii, TB) and distal muscles (extensor carpi radialis, ECR, and first dorsal interosseus, 1DI) during isolated contraction of one of these muscles or during selective co-activation with other muscles involved in pointing. Compared to an isolated contraction of the ECR, the plateau-level of the ECR sigmoid I/O curve increased markedly during co-activation with the AD while pointing. In contrast, the I/O curve of AD was not influenced by activation of the more distal muscles involved in pointing. Moreover, the 1DI I/O curve was not influenced by activation of the more proximal muscles. Three arguments argue for a cortical site of facilitation of ECR motor potentials. First, ECR motor potentials evoked by a near threshold TMS stimulus were facilitated when the AD and ECR were co-activated during pointing but not those in response to a near threshold anodal electrical stimulus. Second, the ECR H reflex was not found to be task dependent, indicating that the recruitment gain of the ECR α-motoneuron pool did not differ between tasks. Finally, in comparison with an isolated ECR contraction, intracortical inhibition tested at the ECR cortical site was decreased during pointing. These results suggest that activation of shoulder, elbow, and wrist muscles involved in pointing appear to involve, at least in part, common motor cortical circuits. In contrast, at least in the pointing task, the motor cortical circuits involved in activation of the 1DI appear to act independently.


2018 ◽  
Vol 29 (2) ◽  
pp. 802-813 ◽  
Author(s):  
Kai Hwang ◽  
James M Shine ◽  
Mark D’Esposito

Abstract Flexible interactions between brain regions enable neural systems to adaptively transfer and process information. However, the neural substrates that regulate adaptive communications between brain regions are understudied. In this human fMRI study, we investigated this issue by tracking time-varying, task-evoked changes in functional connectivity between localized occipitotemporal regions while participants performed different tasks on the same visually presented stimuli. We found that functional connectivity between ventral temporal and the primary visual regions selectively increased during the processing of task-relevant information. Further, additional task demands selectively strengthen these targeted connectivity patterns. To identify candidate regions that contribute to this increase in inter-regional coupling, we regressed the task-specific time-varying connectivity strength between primary visual and occipitotemporal regions against voxel-wise activity patterns elsewhere in the brain. This allowed us to identify a set of frontal and parietal regions whose activity increased as a function of task-evoked functional connectivity. These results suggest that frontoparietal regions may provide top-down biasing signals to influence task-specific interactions between brain regions.


2014 ◽  
Author(s):  
Martin Vinck ◽  
Renata Batista-Brito ◽  
Ulf Knoblich ◽  
Jessica A Cardin

Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits.


1999 ◽  
Vol 82 (5) ◽  
pp. 2676-2692 ◽  
Author(s):  
Daniel W. Moran ◽  
Andrew B. Schwartz

The motor cortical substrate associated with reaching was studied as monkeys moved their hands from a central position to one of eight targets spaced around a circle. Single-cell activity patterns were recorded in the proximal arm area of motor cortex during the task. In addition to the well-studied average directional selectivity (“preferred direction”) of single-cell activity, we also found the time-varying speed of movement to be represented in the cortical activity. A single equation relating motor cortical discharge rate to these two parameters was developed. This equation, which has both independent (speed only) and interactive (speed and direction) components, described a large portion of the time-varying motor cortical activity during the task. Electromyographic activity from a number of upper arm muscles was recorded during this task. Muscle activity was also found to be directionally tuned; however, the distributions of preferred directions were found to be significantly different from cortical activity. In addition, the effect of speed on cortical and muscle activity was also found to be significantly different.


2000 ◽  
Vol 78 (11) ◽  
pp. 923-933 ◽  
Author(s):  
Stephen H Scott

Reaching movements to spatial targets require motor patterns at the shoulder to be coordinated carefully with those at the elbow to smoothly move the hand through space. While the motor cortex is involved in this volitional task, considerable debate remains about how this cortical region participates in planning and controlling movement. This article reviews two opposing interpretations of motor cortical function during multi-joint movements. On the one hand, studies performed predominantly on single-joint movement generally support the notion that motor cortical activity is intimately involved in generating motor patterns at a given joint. In contrast, studies on reaching demonstrate correlations between motor cortical activity and features of movement related to the hand, suggesting that the motor cortex may be involved in more global features of the task. Although this latter paradigm involves a multi-joint motor task in which neural activity is correlated with features of movement related to the hand, this neural activity is also correlated to other movement variables. Therefore it is difficult to assess if and how the motor cortex contributes to the coordination of motor patterns at different joints. In particular, present paradigms cannot assess whether motor cortical activity contributes to the control of one joint or multiple joints during whole-arm tasks. The final point discussed in this article is the development of a new experimental device (KINARM) that can both monitor and manipulate the mechanics of the shoulder and elbow independently during multi-joint motor tasks. It is hoped that this new device will provide a new approach for examining how the motor cortex is involved in motor coordination.Key words: reaching movements, biomechanics, motor coordination, proximal arm.


Sign in / Sign up

Export Citation Format

Share Document