scholarly journals Atlastins mediate selective autophagy of the endoplasmic reticulum

2018 ◽  
Author(s):  
Jin Rui Liang ◽  
Emily Lingeman ◽  
Saba Ahmed ◽  
Jacob Corn

ABSTRACTThe selective lysosomal degradation (autophagy) of entire organelles is required for cellular homeostasis, and its dysregulation is involved in degenerative disorders such as Parkinson’s Disease. While autophagy of mitochondria (mitophagy) is becoming better understood, other forms of organelle autophagy are relatively unexplored. Here we develope multiple quantitative assays to measure organelle autophagy using flow cytometry, microscopy, and Western blotting. Focusing on autophagy of the endoplasmic reticulum (ER-phagy), we show that these assays allow facile measurement of ER-phagy, and that ER-phagy is inhibited by knockdown of either core autophagy components or the recently reported FAM134B ER-phagy receptor. Using these assays, we further identify that Atlastins, the ER-resident GTPases involved in ER membrane morphology, are key positive effectors of ER-phagy. Atlastin-depleted cells have decreased ER-phagy under starvation conditions, and Atlastin’s role in ER-phagy requires both a functional GTPase domain and proper ER localization. The three Atlastin family members functionally compensate for one another during ER-phagy and may form heteromeric complexes with one another. We also find that Atlastins act downstream of the FAM134B ER-phagy receptor. We propose that during ER-phagy, Atlastins remodel ER membrane to separate pieces of FAM134B-marked ER for efficient autophagosomal engulfment. Human mutations in Atlastins led to hereditary spastic paraplegia, and our results suggest that this disease may be linked to deficiencies in ER-phagy rather than ER morphology.

2018 ◽  
Vol 217 (10) ◽  
pp. 3354-3367 ◽  
Author(s):  
Jin Rui Liang ◽  
Emily Lingeman ◽  
Saba Ahmed ◽  
Jacob E. Corn

Specific receptors are required for the autophagic degradation of endoplasmic reticulum (ER), known as ER-phagy. However, little is known about how the ER is remodeled and separated for packaging into autophagosomes. We developed two ER-phagy–specific reporter systems and found that Atlastins are key positive effectors and also targets of ER-phagy. Atlastins are ER-resident GTPases involved in ER membrane morphology, and Atlastin-depleted cells have decreased ER-phagy under starvation conditions. Atlastin’s role in ER-phagy requires a functional GTPase domain and proper ER localization, both of which are also involved in ER architecture. The three Atlastin family members functionally compensate for one another during ER-phagy and may form heteromeric complexes with one another. We further find that Atlastins act downstream of the FAM134B ER-phagy receptor, such that depletion of Atlastins represses ER-autophagy induced by the overexpression of FAM134B. We propose that during ER-phagy, Atlastins remodel ER membrane to separate pieces of FAM134B-marked ER for efficient autophagosomal engulfment.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Yo-hei Yamamoto ◽  
Takeshi Noda

Abstract Autophagy is a process in which a myriad membrane structures called autophagosomes are formed de novo in a single cell, which deliver the engulfed substrates into lysosomes for degradation. The size of the autophagosomes is relatively uniform in non-selective autophagy and variable in selective autophagy. It has been recently established that autophagosome formation occurs near the endoplasmic reticulum (ER). In this review, we have discussed recent advances in the relationship between autophagosome formation and endoplasmic reticulum. Autophagosome formation occurs near the ER subdomain enriched with phospholipid synthesizing enzymes like phosphatidylinositol synthase (PIS)/CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and choline/ethanolamine phosphotransferase 1 (CEPT1). Autophagy-related protein 2 (Atg2), which is involved in autophagosome formation has a lipid transfer capacity and is proposed to directly transfer the lipid molecules from the ER to form autophagosomes. Vacuole membrane protein 1 (VMP1) and transmembrane protein 41b (TMEM41b) are ER membrane proteins that are associated with the formation of the subdomain. Recently, we have reported that an uncharacterized ER membrane protein possessing the DNAJ domain, called ERdj8/DNAJC16, is associated with the regulation of the size of autophagosomes. The localization of ERdj8/DNAJC16 partially overlaps with the PIS-enriched ER subdomain, thereby implying its association with autophagosome size determination.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


2007 ◽  
Vol 30 (4) ◽  
pp. 84
Author(s):  
Michael D. Jain ◽  
Hisao Nagaya ◽  
Annalyn Gilchrist ◽  
Miroslaw Cygler ◽  
John J.M. Bergeron

Protein synthesis, folding and degradation functions are spatially segregated in the endoplasmic reticulum (ER) with respect to the membrane and the ribosome (rough and smooth ER). Interrogation of a proteomics resource characterizing rough and smooth ER membranes subfractionated into cytosolic, membrane, and soluble fractions gives a spatial map of known proteins involved in ER function. The spatial localization of 224 identified unknown proteins in the ER is predicted to give insight into their function. Here we provide evidence that the proteomics resource accurately predicts the function of new proteins involved in protein synthesis (nudilin), protein translocation across the ER membrane (nicalin), co-translational protein folding (stexin), and distal protein folding in the lumen of the ER (erlin-1, TMX2). Proteomics provides the spatial localization of proteins and can be used to accurately predict protein function.


2020 ◽  
Vol 28 (12) ◽  
pp. 1763-1768
Author(s):  
Thomas Bourinaris ◽  
◽  
Damian Smedley ◽  
Valentina Cipriani ◽  
Isabella Sheikh ◽  
...  

AbstractHereditary spastic paraplegia (HSP) is a group of heterogeneous inherited degenerative disorders characterized by lower limb spasticity. Fifty percent of HSP patients remain yet genetically undiagnosed. The 100,000 Genomes Project (100KGP) is a large UK-wide initiative to provide genetic diagnosis to previously undiagnosed patients and families with rare conditions. Over 400 HSP families were recruited to the 100KGP. In order to obtain genetic diagnoses, gene-based burden testing was carried out for rare, predicted pathogenic variants using candidate variants from the Exomiser analysis of the genome sequencing data. A significant gene-disease association was identified for UBAP1 and HSP. Three protein truncating variants were identified in 13 patients from 7 families. All patients presented with juvenile form of pure HSP, with median age at onset 10 years, showing autosomal dominant inheritance or de novo occurrence. Additional clinical features included parkinsonism and learning difficulties, but their association with UBAP1 needs to be established.


2005 ◽  
Vol 169 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Cosima Luedeke ◽  
Stéphanie Buvelot Frei ◽  
Ivo Sbalzarini ◽  
Heinz Schwarz ◽  
Anne Spang ◽  
...  

Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.


Nature ◽  
2015 ◽  
Vol 522 (7556) ◽  
pp. 359-362 ◽  
Author(s):  
Keisuke Mochida ◽  
Yu Oikawa ◽  
Yayoi Kimura ◽  
Hiromi Kirisako ◽  
Hisashi Hirano ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Belgin Yalçın ◽  
Lu Zhao ◽  
Martin Stofanko ◽  
Niamh C O'Sullivan ◽  
Zi Han Kang ◽  
...  

Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.


2020 ◽  
Vol 7 (10) ◽  
pp. 2077
Author(s):  
Sai Chandar Dudipala ◽  
Naveen Reddy Cheruku ◽  
Krishna Chaithanya Battu

Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurological disorders that are characterized by progressive spasticity of the lower extremities. It can present as pure form or complex form. It can be present from infancy to adulthood, but majority in adult population. Childhood onset HSP must be differentiated from common conditions like cerebral palsy, neurodegenerative disorders and metabolic disorders. Many patients with pediatric HSP are mistakenly diagnosed with cerebral palsy. In children with spastic paraplegia in whom no acquired cause identified, HSP should be considered. Here we diagnosed a 6-year-old boy with HSP who presented with progressive spastic paraplegia, intellectual disability, seizures, joint contractures and cataract. His genetic study revealed exonic deletion of endoplasmic reticulum lipid raft-associated protein gene, which is associated with complicated Autosomal recessive HSP 18 (SPG18). HSP 18 was rarely described in literature.


Sign in / Sign up

Export Citation Format

Share Document