Multisensory expectations shape olfactory input to the brain
SummaryThe mammalian brain interprets sensory input based on prior multisensory knowledge of the external world, but it is unknown how this knowledge influences neural processing in individual sensory modalities. We found that GABAergic periglomerular interneuron populations in the olfactory bulb endogenously respond not only to odors but also to visual, auditory, and somatosensory stimuli in waking (but not anesthetized) mice. When these stimuli predict future odors, they evoke enhanced interneuron activity during the time odor normally occurs. When expectations are violated by omitting an expected “warning tone” before an odor, odor presentation evokes a burst of interneuron activity. The resulting GABA release presynaptically suppresses neurotransmitter release from the axon terminals of olfactory sensory neurons, the cells that transduce odor in the nasal epithelium and communicate this information to the brain. Expectations, even those evoked by cues in other sensory modalities, can thus affect the very first neurons in the olfactory system.