scholarly journals X Chromosome Dosage Modulates Multiple Molecular and Cellular Properties of Mouse Pluripotent Stem Cells Independently of Global DNA Methylation Levels

2018 ◽  
Author(s):  
Juan Song ◽  
Adrian Janiszewski ◽  
Natalie De Geest ◽  
Lotte Vanheer ◽  
Irene Talon ◽  
...  

ABSTRACTDuring early mammalian development, the two X-chromosomes in female cells are active. Dosage compensation between XX female and XY male cells is then achieved by X-chromosome inactivation in female cells. Reprogramming female mouse somatic cells into induced pluripotent stem cells (iPSCs) leads to X-chromosome reactivation. The extent to which increased X-chromosome dosage (X-dosage) in female iPSCs leads to differences in the molecular and cellular properties of XX and XY iPSCs is still unclear. We show that chromatin accessibility in mouse iPSCs is modulated by X-dosage. Specific sets of transcriptional regulator motifs are enriched in chromatin with increased accessibility in XX or XY iPSCs. We show that the transcriptome, growth and pluripotency exit are also modulated by X-dosage in iPSCs. To understand the mechanisms by which increased X-dosage modulates the molecular and cellular properties of mouse pluripotent stem cells, we used heterozygous deletions of the X-linked gene Dusp9 in XX embryonic stem cells. We show that X-dosage regulates the transcriptome, open chromatin landscape, growth and pluripotency exit largely independently of global DNA methylation. Our results uncover new insights into X-dosage in pluripotent stem cells, providing principles of how gene dosage modulates the epigenetic and genetic mechanisms regulating cell identity.

2019 ◽  
Vol 12 (2) ◽  
pp. 333-350 ◽  
Author(s):  
Juan Song ◽  
Adrian Janiszewski ◽  
Natalie De Geest ◽  
Lotte Vanheer ◽  
Irene Talon ◽  
...  

2018 ◽  
Vol 11 ◽  
pp. 251686571880293 ◽  
Author(s):  
Adrian Janiszewski ◽  
Juan Song ◽  
Lotte Vanheer ◽  
Natalie De Geest ◽  
Vincent Pasque

How the epigenome of one cell type is remodeled during reprogramming into another unrelated type of cell remains unclear. Overexpression of transcription factors in somatic cells enables the induction of induced pluripotent stem cells (iPSCs). This process entails genome-wide remodeling of DNA methylation, chromatin, and transcription. Recent work suggests that the number of active X chromosomes present in a cell influences remodeling of DNA methylation during somatic cell reprogramming to mouse iPSCs. Female iPSCs with 2 active X chromosomes display global DNA hypomethylation, whereas male XY iPSCs show DNA methylation levels similar to the somatic cells they are derived from. Global DNA methylation erasure in female iPSCs takes place genome-wide and involves repression of DNA methyltransferases. However, on loss of one X chromosome, female iPSCs acquire a DNA methylation landscape resembling that of XY iPSCs. Therefore, it is the X chromosome dosage that dictates global DNA methylation levels in iPSCs. Here, we discuss the evidence that links X chromosome dosage with the regulation of DNA methylation in pluripotent stem cells. We focus on iPSCs reprogramming studies, where X chromosome status is a novel factor impacting our understanding of epigenetic remodeling.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Stephanie F Bellmaine ◽  
Dmitry A Ovchinnikov ◽  
David T Manallack ◽  
Claire E Cuddy ◽  
Andrew G Elefanty ◽  
...  

Genetic analysis has revealed that the dual specificity protein kinase DYRK1A has multiple roles in the development of the central nervous system. Increased DYRK1A gene dosage, such as occurs in Down syndrome, is known to affect neural progenitor cell differentiation, while haploinsufficiency of DYRK1A is associated with severe microcephaly. Using a set of known and newly synthesized DYRK1A inhibitors, along with CRISPR-mediated gene activation and shRNA knockdown of DYRK1A, we show here that chemical inhibition or genetic knockdown of DYRK1A interferes with neural specification of human pluripotent stem cells, a process equating to the earliest stage of human brain development. Specifically, DYRK1A inhibition insulates the self-renewing subpopulation of human pluripotent stem cells from powerful signals that drive neural induction. Our results suggest a novel mechanism for the disruptive effects of the absence or haploinsufficiency of DYRK1A on early mammalian development, and reveal a requirement for DYRK1A in the acquisition of competence for differentiation in human pluripotent stem cells.


2014 ◽  
Vol 139 (1) ◽  
pp. 142-161 ◽  
Author(s):  
Marie-Claude Senut ◽  
Arko Sen ◽  
Pablo Cingolani ◽  
Asra Shaik ◽  
Susan J. Land ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Vincenzo Giancotti ◽  
Natascha Bergamin ◽  
Palmina Cataldi ◽  
Claudio Rizzi

High-mobility group A (HMGA) proteins have been examined to understand their participation as structural epigenetic chromatin factors that confer stem-like properties to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and cancer stem cells (CSCs). The function of HMGA was evaluated in conjunction with that of other epigenetic factors such as histones and microRNAs (miRs), taking into consideration the posttranscriptional modifications (PTMs) of histones (acetylation and methylation) and DNA methylation. HMGA proteins were coordinated or associated with histone and DNA modification and the expression of the factors related to pluripotency. CSCs showed remarkable differences compared with ESCs and iPSCs.


Author(s):  
Juli Liu ◽  
Sheng Liu ◽  
Hongyu Gao ◽  
Lei Han ◽  
Xiaona Chu ◽  
...  

AbstractBackgroundEarly human heart and brain development simultaneously occur during embryogenesis. Notably, in human newborns, congenital heart defects strongly associate with neurodevelopmental abnormalities, suggesting a common gene/complex underlying both cardiogenesis and neurogenesis. However, due to lack of in vivo studies, the molecular mechanisms that govern both early human heart and brain development remain elusive.ResultsHere, we report ARID1A, which is a DNA-binding-subunit of the SWI/SNF epigenetic complex, controls both neurogenesis and cardiogenesis from human embryonic stem cells (hESCs) via employing distinct mechanisms. Knockout of ARID1A (ARID1A-/-) led to spontaneous differentiation of neural cells together with globally enhanced expression of neurogenic genes in undifferentiated hESCs. Additionally, when compared with WT hESCs, cardiac differentiation from ARID1A-/- hESCs was prominently suppressed, whereas neural differentiation was significantly promoted. Whole genome-wide scRNA-seq, ATAC-seq, and ChIP-seq analyses revealed that ARID1A was required to open chromatin accessibility on promoters of essential cardiogenic genes, and temporally associated with key cardiogenic transcriptional factors T and MEF2C during early cardiac development. However, during early neural development, transcription of most essential neurogenic genes was dependent on ARID1A, which could interact with a known neural restrictive silencer factor REST/NRSF.ConclusionsWe uncovered the opposite roles by ARID1A to govern both early cardiac and neural development from pluripotent stem cells. Global chromatin accessibility on cardiogenic genes is dependent on ARID1A, whereas transcriptional activity of neurogenic genes is under control by ARID1A, possibly through ARID1A-REST/NRSF interaction.


2020 ◽  
Vol 160 (6) ◽  
pp. 283-294 ◽  
Author(s):  
Paola Rebuzzini ◽  
Maurizio Zuccotti ◽  
Silvia Garagna

X dosage compensation between XX female and XY male mammalian cells is achieved by a process known as X-chromosome inactivation (XCI). XCI initiates early during preimplantation development in female cells, and it is subsequently stably maintained in somatic cells. However, XCI is a reversible process that occurs in vivo in the inner cell mass of the blastocyst, in primordial germ cells or in spermatids during reprogramming. Erasure of transcriptional gene silencing can occur though a mechanism named X-chromosome reactivation (XCR). XCI and XCR have been substantially deciphered in the mouse, whereas they still remain debated in the human. In this review, we summarized the recent advances in the knowledge of X-linked gene dosage compensation during mouse and human preimplantation development and in pluripotent stem cells.


2020 ◽  
Author(s):  
Xiaolin Wei ◽  
Yu Xiang ◽  
Ruocheng Shan ◽  
Derek T Peters ◽  
Tongyu Sun ◽  
...  

The long-range interactions of cis-regulatory elements (cREs) play a central role in regulating the spatial-temporal gene expression program of multi-cellular organism. cREs are characterized by the presence of accessible (or open) chromatin, which can be identified at genome-wide scale with assays such as ATAC-seq, DHS-seq, and FAIRE-seq. However, it remains technically challenging to comprehensively identify the long-range physical interactions that occur between cREs, especially in a cost effective manner using low-input samples. Here, we report HiCAR (High-throughput Chromosome conformation capture on Accessible DNA with mRNA-seq co-assay), a method that enables simultaneous assessment of cis-regulatory chromatin interactions and chromatin accessibility, as well as evaluation of the transcriptome, which represents the functional output of chromatin structure and accessibility. Unlike immunoprecipitation-based methods such as HiChIP, PLAC-seq, and ChIA-PET, HiCAR does not require target-specific antibodies and thus can comprehensively capture the cis-regulatory chromatin contacts anchored at accessible regulatory DNA regions and associated with diverse epigenetic modifications and transcription factor binding. Compared to Trac-looping, another method designed to capture interactions between accessible chromatin regions, HiCAR produced a 17-fold greater yield of informative long-range cis- reads at a similar sequencing depth and required 1,000-fold fewer cells as input. Applying HiCAR to H1 human embryonic stem cells (hESCs) revealed 46,792 cis-regulatory chromatin interactions at 5kb resolution. Interestingly, we found that epigenetically poised, bivalent, and repressed cREs exhibit comparable spatial interaction activity to those transcriptionally activated cREs. Using machine learning approaches, we predicated 22 epigenome features that are potentially important for the spatial interaction activity of cREs in H1 hESC. Lastly, we also identified long-range cis-regulatory chromatin interactions in GM12878 and mouse embryonic stem cells with HiCAR. Our results demonstrate that HiCAR is a robust and cost-effective multi-omics assay, which is broadly applicable for simultaneous analysis of genome architecture, chromatin accessibility, and the transcriptome using low-input samples.


2017 ◽  
Author(s):  
Stephen J. Clark ◽  
Ricard Argelaguet ◽  
Chantriolnt-Andreas Kapourani ◽  
Thomas M. Stubbs ◽  
Heather J. Lee ◽  
...  

AbstractParallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a novel single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.


Sign in / Sign up

Export Citation Format

Share Document