scholarly journals crisprQTL mapping as a genome-wide association framework for cellular genetic screens

2018 ◽  
Author(s):  
Molly Gasperini ◽  
Andrew J. Hill ◽  
José L. McFaline-Figueroa ◽  
Beth Martin ◽  
Cole Trapnell ◽  
...  

AbstractExpression quantitative trait locus (eQTL) and genome-wide association studies (GWAS) are powerful paradigms for mapping the determinants of gene expression and organismal phenotypes, respectively. However, eQTL mapping and GWAS are limited in scope (to naturally occurring, common genetic variants) and resolution (by linkage disequilibrium). Here, we present crisprQTL mapping, a framework in which large numbers of CRISPR/Cas9 perturbations are introduced to each cell on an isogenic background, followed by single-cell RNA-seq (scRNA-seq). crisprQTL mapping is analogous to conventional human eQTL studies, but with individual humans replaced by individual cells; genetic variants replaced by unique combinations of ‘unlinked’ guide RNA (gRNA)-programmed perturbations per cell; and tissue-level RNA-seq of many individuals replaced by scRNA-seq of many cells. By randomly introducing gRNAs, a single population of cells can be leveraged to test for association between each perturbation and the expression of any potential target gene, analogous to how eQTL studies leverage populations of humans to test millions of genetic variants for associations with expression in a genome-wide manner. However, crisprQTL mapping is neither limited to naturally occurring, common genetic variants nor by linkage disequilibrium. As a proof-of-concept, we applied crisprQTL mapping to evaluate 1,119 candidate enhancers with no strong a priori hypothesis as to their target gene(s). Perturbations were made by a nuclease-dead Cas9 (dCas9) tethered to KRAB, and introduced at a mean ‘allele frequency’ of 1.1% into a population of 47,650 profiled human K562 cells (median of 15 gRNAs identified per cell). We tested for differential expression of all genes within 1 megabase (Mb) of each candidate enhancer, effectively evaluating 17,584 potential enhancer-target gene relationships within a single experiment. At an empirical false discovery rate (FDR) of 10%, we identify 128 cis crisprQTLs (11%) whose targeting resulted in downregulation of 105 nearby genes. crisprQTLs were strongly enriched for proximity to their target genes (median 34.3 kilobases (Kb)) and the strength of H3K27ac, p300, and lineage-specific transcription factor (TF) ChIP-seq peaks. Our results establish the power of the eQTL mapping paradigm as applied to programmed variation in populations of cells, rather than natural variation in populations of individuals. We anticipate that crisprQTL mapping will facilitate the comprehensive elucidation of the cis-regulatory architecture of the human genome.

2009 ◽  
Vol 127 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Manit Nuinoon ◽  
Wattanan Makarasara ◽  
Taisei Mushiroda ◽  
Iswari Setianingsih ◽  
Pustika Amalia Wahidiyat ◽  
...  

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S209-S209
Author(s):  
Anastasia Gurinovich ◽  
Anastasia Gurinovich ◽  
Zeyuan Song ◽  
Stacy L Andersen ◽  
Thomas T Perls ◽  
...  

Abstract The strong heritability of extreme human longevity supports the hypothesis that this is a genetically-regulated trait. However, association studies focused on common genetic variants have discovered a limited number of longevity-associated genes. We conducted a genome-wide association study of 4,216 individuals including 1317 centenarians from the New England Centenarian Study (median age = 104 years) using >9M genetic variants imputed to the HRC panel of ~65,000 haplotypes. The set included approximately 5M uncommon variants. The associations were tested using a mixed effect logistic regression model with genotype-based kinship covariance of the random effects to adjust for cryptic relations using the package GENESIS. The analysis discovered 45 genome-wide significant SNPs (p< 5E-08) including 8 new loci in chromosomes 3, 6, 7, 9, 10, 14 and 15 in addition to the APOE locus. The list includes new pQTLs in serum that suggest a new biological mechanism involved in extreme human longevity.


2019 ◽  
Author(s):  
Gabriel Cuellar Partida ◽  
Joyce Y Tung ◽  
Nicholas Eriksson ◽  
Eva Albrecht ◽  
Fazil Aliev ◽  
...  

AbstractHandedness, a consistent asymmetry in skill or use of the hands, has been studied extensively because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and 32 studies from the International Handedness Consortium, we conducted the world’s largest genome-wide association study of handedness (1,534,836 right-handed, 194,198 (11.0%) left-handed and 37,637 (2.1%) ambidextrous individuals). We found 41 genetic loci associated with left-handedness and seven associated with ambidexterity at genome-wide levels of significance (P < 5×10−8). Tissue enrichment analysis implicated the central nervous system and brain tissues including the hippocampus and cerebrum in the etiology of left-handedness. Pathways including regulation of microtubules, neurogenesis, axonogenesis and hippocampus morphology were also highlighted. We found suggestive positive genetic correlations between being left-handed and some neuropsychiatric traits including schizophrenia and bipolar disorder. SNP heritability analyses indicated that additive genetic effects of genotyped variants explained 5.9% (95% CI = 5.8% – 6.0%) of the underlying liability of being left-handed, while the narrow sense heritability was estimated at 12% (95% CI = 7.2% – 17.7%). Further, we show that genetic correlation between left-handedness and ambidexterity is low (rg = 0.26; 95% CI = 0.08 – 0.43) implying that these traits are largely influenced by different genetic mechanisms. In conclusion, our findings suggest that handedness, like many other complex traits is highly polygenic, and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders that has been observed in multiple observational studies.


2020 ◽  
Vol 105 (12) ◽  
pp. 3854-3864
Author(s):  
Jin-Fang Chai ◽  
Shih-Ling Kao ◽  
Chaolong Wang ◽  
Victor Jun-Yu Lim ◽  
Ing Wei Khor ◽  
...  

Abstract Context Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations. Objective To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals. Design and Participants We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants. Results Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P &lt; 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ± 0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level. Conclusion We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.


Sign in / Sign up

Export Citation Format

Share Document