scholarly journals Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts

2018 ◽  
Author(s):  
Chiara De Pascalis ◽  
Carlos Pérez-González ◽  
Shailaja Seetharaman ◽  
Batiste Boëda ◽  
Benoit Vianay ◽  
...  

AbstractMesenchymal cell migration relies on the coordinated regulation of the actin and microtubule networks which participate in polarised cell protrusion, adhesion and contraction. During collective migration, most of the traction forces are generated by the acto-myosin network linked to focal adhesions at the front of leader cells, which transmit these pulling forces to the followers. Here, using an in vitro wound healing assay to induce polarisation and collective directed migration of primary astrocytes, we show that the intermediate filament (IF) network composed of vimentin, GFAP and nestin contributes to directed collective movement by controlling the distribution of forces in the migrating cell monolayer. Together with the cytoskeletal linker plectin, these IFs control the organisation and dynamics of the acto-myosin network, promoting the actin-driven treadmilling of adherens junctions, thereby facilitating the polarisation of leader cells. Independently of their effect on adherens junctions, IFs influence the dynamics and localisation of focal adhesions and limit their mechanical coupling to the acto-myosin network. We thus conclude that IFs promote collective directed migration by restricting the generation of traction forces to the front of leader cells, preventing aberrant tractions in the followers and by contributing to the maintenance of lateral cell-cell interactions.

2018 ◽  
Vol 217 (9) ◽  
pp. 3031-3044 ◽  
Author(s):  
Chiara De Pascalis ◽  
Carlos Pérez-González ◽  
Shailaja Seetharaman ◽  
Batiste Boëda ◽  
Benoit Vianay ◽  
...  

Mesenchymal cell migration relies on the coordinated regulation of the actin and microtubule networks that participate in polarized cell protrusion, adhesion, and contraction. During collective migration, most of the traction forces are generated by the acto-myosin network linked to focal adhesions at the front of leader cells, which transmit these pulling forces to the followers. Here, using an in vitro wound healing assay to induce polarization and collective directed migration of primary astrocytes, we show that the intermediate filament (IF) network composed of vimentin, glial fibrillary acidic protein, and nestin contributes to directed collective movement by controlling the distribution of forces in the migrating cell monolayer. Together with the cytoskeletal linker plectin, these IFs control the organization and dynamics of the acto-myosin network, promoting the actin-driven treadmilling of adherens junctions, thereby facilitating the polarization of leader cells. Independently of their effect on adherens junctions, IFs influence the dynamics and localization of focal adhesions and limit their mechanical coupling to the acto-myosin network. We thus conclude that IFs promote collective directed migration in astrocytes by restricting the generation of traction forces to the front of leader cells, preventing aberrant tractions in the followers, and by contributing to the maintenance of lateral cell–cell interactions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marta Ripamonti ◽  
Nicolas Liaudet ◽  
Latifeh Azizi ◽  
Daniel Bouvard ◽  
Vesa P. Hytönen ◽  
...  

AbstractThe LIM domain-dependent localization of the adapter protein paxillin to β3 integrin-positive focal adhesions (FAs) is not mechanistically understood. Here, by combining molecular biology, photoactivation and FA-isolation experiments, we demonstrate specific contributions of each LIM domain of paxillin and reveal multiple paxillin interactions in adhesion-complexes. Mutation of β3 integrin at a putative paxillin binding site (β3VE/YA) leads to rapidly inward-sliding FAs, correlating with actin retrograde flow and enhanced paxillin dissociation kinetics. Induced mechanical coupling of paxillin to β3VE/YA integrin arrests the FA-sliding, thereby disclosing an essential structural function of paxillin for the maturation of β3 integrin/talin clusters. Moreover, bimolecular fluorescence complementation unveils the spatial orientation of the paxillin LIM-array, juxtaposing the positive LIM4 to the plasma membrane and the β3 integrin-tail, while in vitro binding assays point to LIM1 and/or LIM2 interaction with talin-head domain. These data provide structural insights into the molecular organization of β3 integrin-FAs.


1999 ◽  
Vol 112 (24) ◽  
pp. 4589-4599 ◽  
Author(s):  
F. Li ◽  
Y. Zhang ◽  
C. Wu

Integrin-linked kinase (ILK) is a ubiquitously expressed protein serine/threonine kinase that has been implicated in integrin-, growth factor- and Wnt-signaling pathways. In this study, we show that ILK is a constituent of cell-matrix focal adhesions. ILK was recruited to focal adhesions in all types of cells examined upon adhesion to a variety of extracellular matrix proteins. By contrast, ILK was absent in E-cadherin-mediated cell-cell adherens junctions. In previous studies, we have identified PINCH, a protein consisting of five LIM domains, as an ILK binding protein. We demonstrate in this study that the ILK-PINCH interaction requires the N-terminal-most ANK repeat (ANK1) of ILK and one (the C-terminal) of the two zinc-binding modules within the LIM1 domain of PINCH. The ILK ANK repeats domain, which is capable of interacting with PINCH in vitro, could also form a complex with PINCH in vivo. However, the efficiency of the complex formation or the stability of the complex was markedly reduced in the absence of the C-terminal domain of ILK. The PINCH binding defective ANK1 deletion ILK mutant, unlike the wild-type ILK, was unable to localize and cluster in focal adhesions, suggesting that the interaction with PINCH is necessary for focal adhesion localization and clustering of ILK. The N-terminal ANK repeats domain, however, is not sufficient for mediating focal adhesion localization of ILK, as an ILK mutant containing the ANK repeats domain but lacking the C-terminal integrin binding site failed to localize in focal adhesions. These results suggest that focal adhesions are a major subcellular compartment where ILK functions in intracellular signal transduction, and provide important evidence for a critical role of PINCH and integrins in regulating ILK cellular function.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jesús Gómez-Escudero ◽  
Cristina Clemente ◽  
Diego García-Weber ◽  
Rebeca Acín-Pérez ◽  
Jaime Millán ◽  
...  

Abstract Angiogenesis, the formation of new blood vessels from pre-existing ones, occurs in pathophysiological contexts such as wound healing, cancer, and chronic inflammatory disease. During sprouting angiogenesis, endothelial tip and stalk cells coordinately remodel their cell-cell junctions to allow collective migration and extension of the sprout while maintaining barrier integrity. All these processes require energy, and the predominant ATP generation route in endothelial cells is glycolysis. However, it remains unclear how ATP reaches the plasma membrane and intercellular junctions. In this study, we demonstrate that the glycolytic enzyme pyruvate kinase 2 (PKM2) is required for sprouting angiogenesis in vitro and in vivo through the regulation of endothelial cell-junction dynamics and collective migration. We show that PKM2-silencing decreases ATP required for proper VE-cadherin internalization/traffic at endothelial cell-cell junctions. Our study provides fresh insight into the role of ATP subcellular compartmentalization in endothelial cells during angiogenesis. Since manipulation of EC glycolysis constitutes a potential therapeutic intervention route, particularly in tumors and chronic inflammatory disease, these findings may help to refine the targeting of endothelial glycolytic activity in disease.


2020 ◽  
Vol 133 (14) ◽  
pp. jcs243956 ◽  
Author(s):  
Sachiko Fujiwara ◽  
Shinji Deguchi ◽  
Thomas M. Magin

ABSTRACTKeratin intermediate filament (IF) proteins constitute the major cytoskeletal components in epithelial cells. Missense mutations in keratin 5 (K5; also known as KRT5) or keratin 14 (K14; also known as KRT14), highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS). EBS-associated mutations disrupt keratin networks and change keratinocyte mechanics; however, molecular mechanisms by which mutations shape EBS pathology remain incompletely understood. Here, we demonstrate that, in contrast to keratin-deficient keratinocytes, cells expressing K14R125C, a mutation that causes severe EBS, generate lower traction forces, accompanied by immature focal adhesions with an altered cellular distribution. Furthermore, mutant keratinocytes display reduced directionality during collective migration. Notably, RhoA activity is downregulated in human EBS keratinocytes, and Rho activation rescues stiffness-dependent cell–extracellular matrix (ECM) adhesion formation of EBS keratinocytes. Collectively, our results strongly suggest that intact keratin IF networks regulate mechanotransduction through a Rho signaling pathway upstream of cell–ECM adhesion formation and organized cell migration. Our findings provide insights into the underlying pathophysiology of EBS.This article has an associated First Person interview with the first author of the paper.


2020 ◽  
Vol 375 (1807) ◽  
pp. 20190391 ◽  
Author(s):  
Medhavi Vishwakarma ◽  
Basil Thurakkal ◽  
Joachim P. Spatz ◽  
Tamal Das

Cells of epithelial tissue proliferate and pack together to attain an eventual density homeostasis. As the cell density increases, spatial distribution of velocity and force show striking similarity to the dynamic heterogeneity observed elsewhere in dense granular matter. While the physical nature of this heterogeneity is somewhat known in the epithelial cell monolayer, its biological relevance and precise connection to cell density remain elusive. Relevantly, we had demonstrated how large-scale dynamic heterogeneity in the monolayer stress field in the bulk could critically influence the emergence of leader cells at the wound margin during wound closure, but did not connect the observation to the corresponding cell density. In fact, numerous previous reports had essentially associated long-range force and velocity correlation with either cell density or dynamic heterogeneity, without any generalization. Here, we attempted to unify these two parameters under a single framework and explored their consequence on the dynamics of leader cells, which eventually affected the efficacy of collective migration and wound closure. To this end, we first quantified the dynamic heterogeneity by the peak height of four-point susceptibility. Remarkably, this quantity showed a linear relationship with cell density over many experimental samples. We then varied the heterogeneity, by changing cell density, and found this change altered the number of leader cells at the wound margin. At low heterogeneity, wound closure was slower, with decreased persistence, reduced coordination and disruptive leader–follower interactions. Finally, microscopic characterization of cell–substrate adhesions illustrated how heterogeneity influenced orientations of focal adhesions, affecting coordinated cell movements. Together, these results demonstrate the importance of dynamic heterogeneity in epithelial wound healing. This article is part of the theme issue ‘Multi-scale analysis and modelling of collective migration in biological systems'.


2012 ◽  
Vol 302 (11) ◽  
pp. H2220-H2229 ◽  
Author(s):  
Lucas H. Ting ◽  
Jessica R. Jahn ◽  
Joon I. Jung ◽  
Benjamin R. Shuman ◽  
Shirin Feghhi ◽  
...  

Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.


2005 ◽  
Vol 289 (2) ◽  
pp. F431-F441 ◽  
Author(s):  
Maribel Rico ◽  
Amitava Mukherjee ◽  
Martha Konieczkowski ◽  
Leslie A. Bruggeman ◽  
R. Tyler Miller ◽  
...  

Podocyte differentiation is required for normal glomerular filtration barrier function and is regulated by the transcription factor WT1. We identified WT1-interacting protein (WTIP) and hypothesized that it functions as both a scaffold for slit diaphragm proteins and a corepressor of WT1 transcriptional activity by shuttling from cell-cell junctions to the nucleus after injury. Endogenous WTIP colocalizes with zonula occludens-1 (ZO-1) in cultured mouse podocyte adherens junctions. To model podocyte injury in vitro, we incubated differentiated podocytes with puromycin aminonucleoside (PAN; 100 μg/ml) for 24 h, which disassembled cell-cell contacts, rearranged actin cytoskeleton, and caused process retraction. Podocyte synaptopodin expression diminished after PAN treatment, consistent with podocyte dedifferentiation in some human glomerular diseases. To assess podocyte function, we measured albumin flux across differentiated podocytes cultured on collagen-coated Transwell filters. Albumin transit across PAN-treated cells increased to levels observed with undifferentiated podocytes. Consistent with our hypothesis, WTIP, as well as ZO-1, translocated from podocyte adherens junctions to nuclei in PAN-treated cells. Because WTIP is a transcriptional corepressor for WT1, we examined the effect of PAN on expression of retinoblastoma binding protein Rbbp7 (also known as RbAp46), a WT1 target gene expressed in S-shaped bodies during nephrogenesis. Rbbp7 expression in PAN-treated podocytes was reduced compared with untreated cells. In conclusion, WTIP translocates from cell-cell junctions to the nucleus in PAN-treated podocytes. We suggest that WTIP monitors slit diaphragm protein assembly and shuttles into the nucleus after podocyte injury, translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype.


2006 ◽  
Vol 291 (4) ◽  
pp. F856-F865 ◽  
Author(s):  
Colin Friedrich ◽  
Nicole Endlich ◽  
Wilhelm Kriz ◽  
Karlhans Endlich

Podocytes are exposed to mechanical forces arising from glomerular capillary pressure and filtration. It has been shown that stretch affects podocyte biology in vitro and plays a significant role in the development of glomerulosclerosis in vivo. However, whether podocytes are sensitive to fluid shear stress is completely unknown. In the present study, we therefore exposed cells of a recently generated conditionally immortalized mouse podocyte cell line to defined fluid shear stress in a flow chamber, mimicking flow of the glomerular ultrafiltrate over the surface of podocytes in Bowman's space. Shear stress above 0.25 dyne/cm2 resulted in dramatic loss of podocytes but not of proximal tubular epithelial cells (LLC-PK1 cells) after 20 h. At 0.015–0.25 dyne/cm2, lamellipodia formation in podocytes was enhanced and the actin nucleation protein cortactin was redistributed to the cell margins. Shear stress further diminished stress fibers and the presence of vinculin in focal adhesions. Linear zonula occludens-1 distribution at cell-cell contacts remained unaffected at low shear stress. At 0.25 dyne/cm2, the monolayer was broken up and remaining cell-cell contacts were reinforced by F-actin and α-actinin. Because the cytoskeletal changes induced by shear stress suggested the involvement of tyrosine kinases (TKs), we tested several TK inhibitors that were all without effect on podocyte number under static conditions. At 0.25 dyne/cm2, however, the TK inhibitors genistein and AG 82 were associated with marked podocyte loss. Our data demonstrate that podocytes are highly sensitive to fluid shear stress. Shear stress induces a reorganization of the actin cytoskeleton and activates specific tyrosine kinases that are required to withstand fluid shear stress.


2012 ◽  
Vol 302 (1) ◽  
pp. F103-F115 ◽  
Author(s):  
Jane H. Kim ◽  
Amitava Mukherjee ◽  
Sethu M. Madhavan ◽  
Martha Konieczkowski ◽  
John R. Sedor

Podocytes respond to environmental cues by remodeling their slit diaphragms and cell-matrix adhesive junctions. Wt1-interacting protein (Wtip), an Ajuba family LIM domain scaffold protein expressed in the podocyte, coordinates cell adhesion changes and transcriptional responses to regulate podocyte phenotypic plasticity. We evaluated effects of Wtip on podocyte cell-cell and cell-matrix contact organization using gain-of- and loss-of-function methods. Endogenous Wtip targeted to focal adhesions in adherent but isolated podocytes and then shifted to adherens junctions after cells made stable, homotypic contacts. Podocytes with Wtip knockdown (shWtip) adhered but failed to spread normally. Noncontacted shWtip podocytes did not assemble actin stress fibers, and their focal adhesions failed to mature. As shWtip podocytes established cell-cell contacts, stable adherens junctions failed to form and F-actin structures were disordered. In shWtip cells, cadherin and β-catenin clustered in irregularly distributed spots that failed to laterally expand. Cell surface biotinylation showed diminished plasma membrane cadherin, β-catenin, and α-catenin in shWtip podocytes, although protein expression was similar in shWtip and control cells. Since normal actin dynamics are required for organization of adherens junctions and focal adhesions, we determined whether Wtip regulates F-actin assembly. Undifferentiated podocytes did not elaborate F-actin stress fibers, but when induced to overexpress WTIP, formed abundant stress fibers, a process blocked by the RhoA inhibitor C3 toxin and a RhoA kinase inhibitor. WTIP directly interacted with Rho guanine nucleotide exchange factor (GEF) 12 (Arhgef12), a RhoA-specific GEF enriched in the glomerulus. In conclusion, stable assembly of podocyte adherens junctions and cell-matrix contacts requires Wtip, a process that may be mediated by spatiotemporal regulation of RhoA activity through appropriate targeting of Arhgef12.


Sign in / Sign up

Export Citation Format

Share Document