scholarly journals Machine learning to classify animal species in camera trap images: applications in ecology

2018 ◽  
Author(s):  
Michael A. Tabak ◽  
Mohammad S. Norouzzadeh ◽  
David W. Wolfson ◽  
Steven J. Sweeney ◽  
Kurt C. VerCauteren ◽  
...  

Abstract1. Motion-activated cameras (“camera traps”) are increasingly used in ecological and management studies for remotely observing wildlife and have been regarded as among the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analyzed, typically by visually observing each image, in order to extract data that can be used in ecological analyses.2. We trained machine learning models using convolutional neural networks with the ResNet-18 architecture and 3,367,383 images to automatically classify wildlife species from camera trap images obtained from five states across the United States. We tested our model on an independent subset of images not seen during training from the United States and on an out-of-sample (or “out-of-distribution” in the machine learning literature) dataset of ungulate images from Canada. We also tested the ability of our model to distinguish empty images from those with animals in another out-of-sample dataset from Tanzania, containing a faunal community that was novel to the model.3. The trained model classified approximately 2,000 images per minute on a laptop computer with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in the United States, the highest accuracy of such a model to date. Out-of-sample validation from Canada achieved 82% accuracy, and correctly identified 94% of images containing an animal in the dataset from Tanzania. We provide an R package (Machine Learning for Wildlife Image Classification; MLWIC) that allows the users to A) implement the trained model presented here and B) train their own model using classified images of wildlife from their studies.4. The use of machine learning to rapidly and accurately classify wildlife in camera trap images can facilitate non-invasive sampling designs in ecological studies by reducing the burden of manually analyzing images. We present an R package making these methods accessible to ecologists. We discuss the implications of this technology for ecology and considerations that should be addressed in future implementations of these methods.

2020 ◽  
Author(s):  
Michael A. Tabak ◽  
Mohammad S. Norouzzadeh ◽  
David W. Wolfson ◽  
Erica J. Newton ◽  
Raoul K. Boughton ◽  
...  

AbstractMotion-activated wildlife cameras (or “camera traps”) are frequently used to remotely and non-invasively observe animals. The vast number of images collected from camera trap projects have prompted some biologists to employ machine learning algorithms to automatically recognize species in these images, or at least filter-out images that do not contain animals. These approaches are often limited by model transferability, as a model trained to recognize species from one location might not work as well for the same species in different locations. Furthermore, these methods often require advanced computational skills, making them inaccessible to many biologists.We used 3 million camera trap images from 18 studies in 10 states across the United States of America to train two deep neural networks, one that recognizes 58 species, the “species model,” and one that determines if an image is empty or if it contains an animal, the “empty-animal model.”Our species model and empty-animal model had accuracies of 96.8% and 97.3%, respectively. Furthermore, the models performed well on some out-of-sample datasets, as the species model had 91% accuracy on species from Canada (accuracy range 36-91% across all out-of-sample datasets) and the empty-animal model achieved an accuracy of 91-94% on out-of-sample datasets from different continents.Our software addresses some of the limitations of using machine learning to classify images from camera traps. By including many species from several locations, our species model is potentially applicable to many camera trap studies in North America. We also found that our empty-animal model can facilitate removal of images without animals globally. We provide the trained models in an R package (MLWIC2: Machine Learning for Wildlife Image Classification in R), which contains Shiny Applications that allow scientists with minimal programming experience to use trained models and train new models in six neural network architectures with varying depths.


2021 ◽  
Vol 256 ◽  
pp. 71-109
Author(s):  
Philippe Goulet Coulombe ◽  
Massimiliano Marcellino ◽  
Dalibor Stevanović

Based on evidence gathered from a newly built large macroeconomic dataset (MD) for the UK, labelled UK-MD and comparable to similar datasets for the United States and Canada, it seems the most promising avenue for forecasting during the pandemic is to allow for general forms of nonlinearity by using machine learning (ML) methods. But not all nonlinear ML methods are alike. For instance, some do not allow to extrapolate (like regular trees and forests) and some do (when complemented with linear dynamic components). This and other crucial aspects of ML-based forecasting in unprecedented times are studied in an extensive pseudo-out-of-sample exercise.


2021 ◽  
Vol 14 (5) ◽  
pp. 472
Author(s):  
Tyler C. Beck ◽  
Kyle R. Beck ◽  
Jordan Morningstar ◽  
Menny M. Benjamin ◽  
Russell A. Norris

Roughly 2.8% of annual hospitalizations are a result of adverse drug interactions in the United States, representing more than 245,000 hospitalizations. Drug–drug interactions commonly arise from major cytochrome P450 (CYP) inhibition. Various approaches are routinely employed in order to reduce the incidence of adverse interactions, such as altering drug dosing schemes and/or minimizing the number of drugs prescribed; however, often, a reduction in the number of medications cannot be achieved without impacting therapeutic outcomes. Nearly 80% of drugs fail in development due to pharmacokinetic issues, outlining the importance of examining cytochrome interactions during preclinical drug design. In this review, we examined the physiochemical and structural properties of small molecule inhibitors of CYPs 3A4, 2D6, 2C19, 2C9, and 1A2. Although CYP inhibitors tend to have distinct physiochemical properties and structural features, these descriptors alone are insufficient to predict major cytochrome inhibition probability and affinity. Machine learning based in silico approaches may be employed as a more robust and accurate way of predicting CYP inhibition. These various approaches are highlighted in the review.


2021 ◽  
pp. 1-4
Author(s):  
Mathieu D'Aquin ◽  
Stefan Dietze

The 29th ACM International Conference on Information and Knowledge Management (CIKM) was held online from the 19 th to the 23 rd of October 2020. CIKM is an annual computer science conference, focused on research at the intersection of information retrieval, machine learning, databases as well as semantic and knowledge-based technologies. Since it was first held in the United States in 1992, 28 conferences have been hosted in 9 countries around the world.


2015 ◽  
Vol 130 (3) ◽  
pp. 1117-1165 ◽  
Author(s):  
Hunt Allcott

Abstract “Site selection bias” can occur when the probability that a program is adopted or evaluated is correlated with its impacts. I test for site selection bias in the context of the Opower energy conservation programs, using 111 randomized control trials involving 8.6 million households across the United States. Predictions based on rich microdata from the first 10 replications substantially overstate efficacy in the next 101 sites. Several mechanisms caused this positive selection. For example, utilities in more environmentalist areas are more likely to adopt the program, and their customers are more responsive to the treatment. Also, because utilities initially target treatment at higher-usage consumer subpopulations, efficacy drops as the program is later expanded. The results illustrate how program evaluations can still give systematically biased out-of-sample predictions, even after many replications.


2018 ◽  
Vol 10 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Michael A. Tabak ◽  
Mohammad S. Norouzzadeh ◽  
David W. Wolfson ◽  
Steven J. Sweeney ◽  
Kurt C. Vercauteren ◽  
...  

2021 ◽  
Author(s):  
satya katragadda ◽  
ravi teja bhupatiraju ◽  
vijay raghavan ◽  
ziad ashkar ◽  
raju gottumukkala

Abstract Background: Travel patterns of humans play a major part in the spread of infectious diseases. This was evident in the geographical spread of COVID-19 in the United States. However, the impact of this mobility and the transmission of the virus due to local travel, compared to the population traveling across state boundaries, is unknown. This study evaluates the impact of local vs. visitor mobility in understanding the growth in the number of cases for infectious disease outbreaks. Methods: We use two different mobility metrics, namely the local risk and visitor risk extracted from trip data generated from anonymized mobile phone data across all 50 states in the United States. We analyzed the impact of just using local trips on infection spread and infection risk potential generated from visitors' trips from various other states. We used the Diebold-Mariano test to compare across three machine learning models. Finally, we compared the performance of models, including visitor mobility for all the three waves in the United States and across all 50 states. Results: We observe that visitor mobility impacts case growth and that including visitor mobility in forecasting the number of COVID-19 cases improves prediction accuracy by 34. We found the statistical significance with respect to the performance improvement resulting from including visitor mobility using the Diebold-Mariano test. We also observe that the significance was much higher during the first peak March to June 2020. Conclusion: With presence of cases everywhere (i.e. local and visitor), visitor mobility (even within the country) is shown to have significant impact on growth in number of cases. While it is not possible to account for other factors such as the impact of interventions, and differences in local mobility and visitor mobility, we find that these observations can be used to plan for both reopening and limiting visitors from regions where there are high number of cases.


2021 ◽  
Vol 11 (23) ◽  
pp. 11227
Author(s):  
Arnold Kamis ◽  
Yudan Ding ◽  
Zhenzhen Qu ◽  
Chenchen Zhang

The purpose of this paper is to model the cases of COVID-19 in the United States from 13 March 2020 to 31 May 2020. Our novel contribution is that we have obtained highly accurate models focused on two different regimes, lockdown and reopen, modeling each regime separately. The predictor variables include aggregated individual movement as well as state population density, health rank, climate temperature, and political color. We apply a variety of machine learning methods to each regime: Multiple Regression, Ridge Regression, Elastic Net Regression, Generalized Additive Model, Gradient Boosted Machine, Regression Tree, Neural Network, and Random Forest. We discover that Gradient Boosted Machines are the most accurate in both regimes. The best models achieve a variance explained of 95.2% in the lockdown regime and 99.2% in the reopen regime. We describe the influence of the predictor variables as they change from regime to regime. Notably, we identify individual person movement, as tracked by GPS data, to be an important predictor variable. We conclude that government lockdowns are an extremely important de-densification strategy. Implications and questions for future research are discussed.


2019 ◽  
Author(s):  
◽  
Hayder Yousif

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Camera traps are a popular tool to sample animal populations because they are noninvasive, detect a variety of species, and can record many thousands of animal detections per deployment. Cameras are typically set to take bursts of multiple images for each detection, and are deployed in arrays of dozens or hundreds of sites, often resulting in millions of images per study. The task of converting images to animal detection records from such large image collections is daunting, and made worse by situations that generate copious empty pictures from false triggers (e.g. camera malfunction or moving vegetation) or pictures of humans. We offer the first widely available computer vision tool for processing camera trap images. Our results show that the tool is accurate and results in substantial time savings for processing large image datasets, thus improving our ability to monitor wildlife across large scales with camera traps. In this dissertation, we have developed new image/video processing and computer vision algorithms for efficient and accurate object detection and sequence-level classiffication from natural scene camera-trap images. This work addresses the following five major tasks: (1) Human-animal detection. We develop a fast and accurate scheme for human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. Specifically, first, We develop an effective background modeling and subtraction scheme to generate region proposals for the foreground objects. We then develop a cross-frame image patch verification to reduce the number of foreground object proposals. Finally, We perform complexity-accuracy analysis of deep convolutional neural networks (DCNN) to develop a fast deep learning classification scheme to classify these region proposals into three categories: human, animals, and background patches. The optimized DCNN is able to maintain high level of accuracy while reducing the computational complexity by 14 times. Our experimental results demonstrate that the proposed method outperforms existing methods on the camera-trap dataset. (2) Object segmentation from natural scene. We first design and train a fast DCNN for animal-human-background object classification, which is used to analyze the input image to generate multi-layer feature maps, representing the responses of different image regions to the animal-human-background classifier. From these feature maps, we construct the so-called deep objectness graph for accurate animal-human object segmentation with graph cut. The segmented object regions from each image in the sequence are then verfied and fused in the temporal domain using background modeling. Our experimental results demonstrate that our proposed method outperforms existing state-of-the-art methods on the camera-trap dataset with highly cluttered natural scenes. (3) DCNN domain background modeling. We replaced the background model with a new more efficient deep learning based model. The input frames are segmented into regions through the deep objectness graph then the region boundaries of the input frames are multiplied by each other to obtain the regions of movement patches. We construct the background representation using the temporal information of the co-located patches. We propose to fuse the subtraction and foreground/background pixel classiffcation of two representation : a) chromaticity and b) deep pixel information. (4) Sequence-level object classiffcation. We proposed a new method for sequence-level video recognition with application to animal species recognition from camera trap images. First, using background modeling and cross-frame patch verification, we developed a scheme to generate candidate object regions or object proposals in the spatiotemporal domain. Second, we develop a dynamic programming optimization approach to identify the best temporal subset of object proposals. Third, we aggregate and fuse the features of these selected object proposals for efficient sequence-level animal species classification.


Sign in / Sign up

Export Citation Format

Share Document