scholarly journals Targeting integrin alpha5 receptor in pancreatic stellate cells to diminish tumor-promoting effects in pancreatic cancer

2018 ◽  
Author(s):  
Praneeth R. Kuninty ◽  
Ruchi Bansal ◽  
Sanne W.L. De Geus ◽  
Jonas Schnittert ◽  
Joop van Baarlen ◽  
...  

AbstractPancreatic stellate cells (PSCs) are the main precursors of cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC), known to induce cancer aggressiveness. Integrin alpha5 (ITGA5), a fibronectin receptor, was found to be overexpressed by CAFs in stroma and linked to poor overall survival (log-rank p=0.022, n=137) of patients with PDAC. In vitro, knockdown of ITGA5 in human PSCs (hPSCs) inhibited their adhesion, migration, and proliferation and also inhibited TGF-β-mediated differentiation. In vivo, co-injection of PANC-1 tumor cells and hPSCs (sh-ITGA5) developed tumors with reduced fibrosis and slower growth rate compared to those composed of PANC-1 and hPSC (sh-Ctrl). Furthermore, we developed a ITGA5-antagonizing peptidomimetic (AV3) which inhibited TGFβ-mediated hPSC differentiation by blocking ITGA5/FAK pathway. In vivo, treatment with AV3 intraperitoneally attenuated tumor fibrosis and thereby enhanced the efficacy of gemcitabine in patient-derived xenografts in mice. Altogether, this study reports the therapeutic importance of ITGA5 in PDAC and provides novel therapeutic peptidomimetic to enhance the effect of chemotherapy.

2019 ◽  
Vol 5 (9) ◽  
pp. eaax2770 ◽  
Author(s):  
Praneeth R. Kuninty ◽  
Ruchi Bansal ◽  
Susanna W. L. De Geus ◽  
Deby F. Mardhian ◽  
Jonas Schnittert ◽  
...  

Abundant desmoplastic stroma is the hallmark for pancreatic ductal adenocarcinoma (PDAC), which not only aggravates the tumor growth but also prevents tumor penetration of chemotherapy, leading to treatment failure. There is an unmet clinical need to develop therapeutic solutions to the tumor penetration problem. In this study, we investigated the therapeutic potential of integrin α5 (ITGA5) receptor in the PDAC stroma. ITGA5 was overexpressed in the tumor stroma from PDAC patient samples, and overexpression was inversely correlated with overall survival. In vitro, knockdown of ITGA5 inhibited differentiation of human pancreatic stellate cells (hPSCs) and reduced desmoplasia in vivo. Our novel peptidomimetic AV3 against ITGA5 inhibited hPSC activation and enhanced the antitumor effect of gemcitabine in a 3D heterospheroid model. In vivo, AV3 showed a strong reduction of desmoplasia, leading to decompression of blood vasculature, enhanced tumor perfusion, and thereby the efficacy of gemcitabine in co-injection and patient-derived xenograft tumor models.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3519
Author(s):  
Chiara Modica ◽  
Martina Olivero ◽  
Francesca Zuppini ◽  
Melissa Milan ◽  
Cristina Basilico ◽  
...  

Pancreatic ductal adenocarcinoma is an aggressive tumor characterized by the presence of an abundant stromal compartment contributing significantly to the malignant phenotype. Pancreatic stellate cells are peculiar fibroblasts present in the stroma and represent the predominant source of extracellular matrix proteins, pro-inflammatory cytokines, and growth factors, including hepatocyte growth factor (HGF). Exploiting a co-culture system of human pancreatic stellate cells and cancer cells, we demonstrated that fibroblast activation was reduced upon HGF/MET axis inhibition. To unveil the signaling pathways sustaining stroma modulation orchestrated by MET activation in the tumor, we analyzed the gene expression profile in pancreatic cancer cells stimulated with HGF and treated with HGF/MET inhibitors. Transcriptome analysis showed that, among all the genes modulated by HGF, a subset of 125 genes was restored to the basal level following treatment with the inhibitors. By examining these genes via ingenuity pathway analysis, tenascin C emerged as a promising candidate linking MET signaling and tumor microenvironment. MET-dependent tenascin C modulation in pancreatic cancer cells was validated at RNA and protein levels both in vitro and in vivo. In conclusion, this work identifies tenascin C as a gene modulated by MET activation, suggesting a role in MET-mediated tumor-stroma interplay occurring during pancreatic tumor progression.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1978
Author(s):  
Soeren M. Buchholz ◽  
Robert G. Goetze ◽  
Shiv K. Singh ◽  
Christoph Ammer-Herrmenau ◽  
Frances M. Richards ◽  
...  

Background: The tumor microenvironment (TME) is composed of fibro-inflammatory cells and extracellular matrix (ECM) components. However, the exact contribution of the various TME compartments towards therapeutic response is unknown. Here, we aim to dissect the specific contribution of tumor-associated macrophages (TAMs) towards drug delivery and response in pancreatic ductal adenocarcinoma (PDAC). Methods: The effect of gemcitabine was assessed in human and murine macrophages, human pancreatic stellate cells (hPSCs), and tumor cells (L3.6pl, BxPC3 and KPC) in vitro. The drug metabolism of gemcitabine was analyzed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Preclinical studies were conducted using KrasG12D;p48-Cre and KrasG12D;p53172H;Pdx-Cre mice to investigate gemcitabine delivery at different stages of tumor progression and upon pharmacological TAM depletion. Results: Gemcitabine accumulation was significantly increased in murine PDAC tissue compared to pancreatic intraepithelial neoplasia (PanIN) lesions and healthy control pancreas tissue. In vitro, macrophages accumulated and rapidly metabolized gemcitabine resulting in a significant drug scavenging effect for gemcitabine. Finally, pharmacological TAM depletion enhanced therapeutic response to gemcitabine in tumor-bearing KPC mice. Conclusion: Macrophages rapidly metabolize gemcitabine in vitro, and pharmacological depletion improves the therapeutic response to gemcitabine in vivo. Our study supports the notion that TAMs might be a promising therapeutic target in PDAC.


2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Claus Kordes ◽  
Iris Sawitza ◽  
Dieter Häussinger

Abstract Stellate cells are vitamin A-storing cells of liver and pancreas and have been described in all vertebrates ranging from lampreys (primitive fish) to humans, demonstrating their major importance. This cell type is thought to contribute to fibrosis, a condition characterized by an excess deposition of extracellular matrix proteins. Recently, the expression of stem/progenitor cell markers, such as CD133 (prominin-1) and Oct4, was discovered in hepatic stellate cells (HSCs) of rats. Moreover, HSCs possess signaling pathways important for maintenance of stemness and cell differentiation, such as hedgehog, β-catenin-dependent Wnt, and Notch signaling, and are resistant to CD95-mediated apoptosis. In analogy to a stem cell niche, some characteristics of quiescent HSC are maintained by aid of a special microenvironment located in the space of Dissé. Finally, stellate cells display a differentiation potential as investigated in vitro and in vivo. Collectively all these properties are congruently found in stem/progenitor cells and support the concept that stellate cells are undifferentiated cells, which might play an important role in liver regeneration. The present review highlights findings related to this novel aspect of stellate cell biology.


2018 ◽  
Vol 17 (4) ◽  
pp. 1016-1019 ◽  
Author(s):  
Chao Qu ◽  
Qing Wang ◽  
Zhiqiang Meng ◽  
Peng Wang

Pancreatic ductal adenocarcinoma is characterized by an extensive stromal response called desmoplasia. Within the tumor stroma, cancer-associated fibroblasts (CAFs) are the primary cell type. CAFs have been shown to play a role in pancreatic cancer progression; they secrete growth factors, inflammatory cytokines, and chemokines that stimulate signaling pathways in cancer cells and modulate the cancer biology toward increased aggressiveness. Therefore, targeting CAFs may serve as a powerful weapon against pancreatic cancer and improve therapeutic effects. However, a previous study aiming to deplete CAFs by inhibiting sonic Hedgehog signaling failed to show any benefit in survival time of pancreatic cancer patients. We reported that the natural product curcumin reeducated CAFs in pancreatic cancer treatment. A low concentration of curcumin reversed the activation of fibroblasts without exhibiting growth suppression effects. In addition, curcumin suppressed CAF-induced pancreatic cancer cell migration and invasion in vitro and lung metastasis in vivo. The results of our study suggest that active CAFs can be inactivated by certain natural products such as curcumin. Reeducation of CAFs back to their normal state, rather than their indiscriminate depletion, may broaden our view in the development of therapeutic options for the treatment of pancreatic cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Min Zha ◽  
Wei Xu ◽  
Qing Zhai ◽  
Fengfei Li ◽  
Bijun Chen ◽  
...  

Background and Aims. We here assess the effects of PSCs onβ-cell function and apoptosisin vivoandin vitro.Materials and Methods.PSCs were transplanted into Wistar and Goto-Kakizaki (GK) rats. Sixteen weeks after transplantation,β-cell function, apoptosis, and islet fibrosis were assessed.In vitrothe effects of PSCs conditioned medium (PSCs-CM) and/or high concentration of glucose on INS-1 cell function was assessed by measuring insulin secretion, INS-1 cell survival, apoptosis, and endoplasmic reticulum stress (ER stress) associated CHOP expression.Results. PSCs transplantation exacerbated the impairedβ-cell function in GK rats, but had no significant effects in Wistar rats.In vitro, PSCs-CM caused impaired INS-1 cell viability and insulin secretion and increased apoptosis, which were more pronounced in the presence of high glucose.Conclusion.Our study demonstrates that PSCs induceβ-cell failurein vitroandin vivo.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-325180
Author(s):  
Hsi-Chien Huang ◽  
Yun-Chieh Sung ◽  
Chung-Pin Li ◽  
Dehui Wan ◽  
Po-Han Chao ◽  
...  

ObjectiveStromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC.DesignNitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro–in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo.ResultsThe delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy.ConclusionThe co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 621-630 ◽  
Author(s):  
Rie Saito ◽  
Satoko Yamada ◽  
Yoritsuna Yamamoto ◽  
Tsutomu Kodera ◽  
Akemi Hara ◽  
...  

Activin A is a differentiation factor for β-cells and is effective to promote β-cell neogenesis. Activin A is also an autocrine activator of pancreatic stellate cells, which play a critical role in fibrogenesis of the pancreas. Conophylline (CnP) is a natural compound, which reproduces the effect of activin on β-cell differentiation and promotes β-cell neogenesis when administered in vivo. However, its effect on stellate cells is not known. We therefore investigated the effect of CnP on stellate cells both in vitro and in vivo. Unlike activin A, CnP inhibited activation of cultured stellate cells and reduced the production of collagen. We then analyzed the involvement of stellate cells in islet fibrosis in Goto-Kakizaki (GK) rats, a model of type 2 diabetes mellitus. In pancreatic sections obtained from 6-wk-old GK rats, CD68-positive macrophages and glial fibrillary acidic protein- and α-smooth muscle actin-positive stellate cells infiltrated into islets. Later, the number of macrophages was increased, and the α-smooth muscle actin staining of stellate cells became stronger, indicating the involvement of stellate cells in islet fibrosis in GK rats. When CnP was administered orally for 4 wk, starting from 6 wk of age, invasion of stellate cells and macrophages was markedly reduced and islet fibrosis was significantly improved. The insulin content was twice as high in CnP-treated rats. These results indicate that CnP exerts antifibrotic actions both in vitro and in vivo and improves islet fibrosis in Goto-Kakizaki rats.


2021 ◽  
Vol 108 (Supplement_9) ◽  
Author(s):  
Sian Farrell ◽  
Heather Nesbitt ◽  
Laura Mairs ◽  
Nikolitsa Nomikou ◽  
Bridgeen Callan ◽  
...  

Abstract Background Pancreatic cancer remains one of the most recalcitrant forms of cancer with poor prognosis and limited treatment options. SDT is a novel, targeted approach to the treatment of solid tumours. Based on the generation of cytotoxic reactive oxygen species (ROS) following the exposure of a sonosensitiser to ultrasound, the approach is designed to extracorporeally target less accessible lesions. Here we describe the production of a poly(lactic-co-glycolic acid) (PLGA), polyethyleneimine (PEI), Rose Bengal (RB) and indocyanine green (ICG) containing composite nanoparticles and describe their use in SDT-mediated treatment of pancreatic cancer using both in vitro and in vivo target models. Methods Nanoparticles were prepared using an oil in water emulsion and solvent diffusion-based approach. These were designated RB-ICGNP. In vitro SDT treatment consisted of exposing BxPC3 (human PDAC cells), T110029 (murine PDAC cells) or hPSC (immortalised human pancreatic stellate cells) to RB-ICGNP and subsequently treating with ultrasound for 30 s at a frequency of 1 MHz, a power density of 3.0 W/cm2 (SATP) using a duty cycle of 50% at a pulse repetition frequency of 100 Hz. For in vivo studies, BxPC3 (xenograft) and T110029 (syngeneic) tumours were treated with a power density of 3.5 W/cm2 ultrasound for 3.5 min. Results Conclusions Using in vitro and in vivo (human xenograft and murine syngeneic) models of pancreatic cancer, RB-ICGNP composite nanoparticles may be employed as a sensitiser for SDT-based treatment of pancreatic cancer. Since pancreatic stellate cells were more sensitive to SDT, the latter may have an impact on tumour stroma. Staining of residual tumour tissues from SDT-treated animals for connective tissue (stroma) confirmed the latter. Since tumour stroma presents a significant challenge to treatment of pancreatic cancer and represents a negative prognostic marker, the impact delivered by SDT may be exploited to potentiate alternative therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document