scholarly journals Local adaptation under gene flow: Recombination, conditional neutrality and genetic trade-offs shape genomic patterns in Arabidopsis lyrata

2018 ◽  
Author(s):  
Tuomas Hämälä ◽  
Outi Savolainen

AbstractShort-scale local adaptation is a complex process involving selection, migration and drift. The expected effects on the genome are well grounded in theory, but examining these on an empirical level has proven difficult, as it requires information about local selection, demographic history and recombination rate variation. Here, we use locally adapted and phenotypically differentiated Arabidopsis lyrata populations from two altitudinal gradients in Norway to test these expectations at the whole-genome level. Demography modelling indicates that populations within the gradients diverged less than 2000 years ago and that the sites are connected by gene flow. The gene flow estimates are, however, highly asymmetric with migration from high to low altitudes being several times more frequent than vice versa. To detect signatures of selection for local adaptation, we estimate patterns of lineage specific differentiation among these populations. Theory predicts that gene flow leads to concentration of adaptive loci in areas of low recombination; a pattern we observe in both lowland-alpine comparisons. Although most selected loci display patterns of conditional neutrality, we found indications of genetic trade-offs, with one locus particularly showing high divergence and signs of selection in both populations. Our results further suggest that resistance to solar radiation is an important adaptation to alpine environments, while vegetative growth and bacterial defense are indicated as selected traits in the lowland habitats. These results provide insights into genetic architectures and evolutionary processes driving local adaptation under gene flow. We also contribute to understanding of traits and biological processes underlying alpine adaptation in northern latitudes.


2019 ◽  
Vol 36 (11) ◽  
pp. 2557-2571 ◽  
Author(s):  
Tuomas Hämälä ◽  
Outi Savolainen

AbstractShort-scale local adaptation is a complex process involving selection, migration, and drift. The expected effects on the genome are well grounded in theory but examining these on an empirical level has proven difficult, as it requires information about local selection, demographic history, and recombination rate variation. Here, we use locally adapted and phenotypically differentiated Arabidopsis lyrata populations from two altitudinal gradients in Norway to test these expectations at the whole-genome level. Demography modeling indicates that populations within the gradients diverged <2 kya and that the sites are connected by gene flow. The gene flow estimates are, however, highly asymmetric with migration from high to low altitudes being several times more frequent than vice versa. To detect signatures of selection for local adaptation, we estimate patterns of lineage-specific differentiation among these populations. Theory predicts that gene flow leads to concentration of adaptive loci in areas of low recombination; a pattern we observe in both lowland-alpine comparisons. Although most selected loci display patterns of conditional neutrality, we found indications of genetic trade-offs, with one locus particularly showing high differentiation and signs of selection in both populations. Our results further suggest that resistance to solar radiation is an important adaptation to alpine environments, while vegetative growth and bacterial defense are indicated as selected traits in the lowland habitats. These results provide insights into genetic architectures and evolutionary processes driving local adaptation under gene flow. We also contribute to understanding of traits and biological processes underlying alpine adaptation in northern latitudes.



2015 ◽  
Vol 282 (1802) ◽  
pp. 20142459 ◽  
Author(s):  
Thomas P. Gosden ◽  
John T. Waller ◽  
Erik I. Svensson

Spatially variable selection has the potential to result in local adaptation unless counteracted by gene flow. Therefore, barriers to gene flow will help facilitate divergence between populations that differ in local selection pressures. We performed spatially and temporally replicated reciprocal field transplant experiments between inland and coastal habitats using males of the common blue damselfly ( Enallagma cyathigerum ) as our study organism. Males from coastal populations had lower local survival rates than resident males at inland sites, whereas we detected no differences between immigrant and resident males at coastal sites, suggesting asymmetric local adaptation in a source–sink system. There were no intrinsic differences in longevity between males from the different environments suggesting that the observed differences in male survival are environment-dependent and probably caused by local adaptation. Furthermore, the coastal environment was found to be warmer and drier than the inland environment, further suggesting local adaptation to microclimatic factors has lead to differential survival of resident and immigrant males. Our results suggest that low survival of immigrant males mediates isolation between closely located populations inhabiting different microclimatic environments.



2018 ◽  
Vol 373 (1757) ◽  
pp. 20170414 ◽  
Author(s):  
Tim Connallon ◽  
Florence Débarre ◽  
Xiang-Yi Li

Many conspicuous forms of evolutionary diversity occur within species. Two prominent examples include evolutionary divergence between populations differentially adapted to their local environments (local adaptation), and divergence between females and males in response to sex differences in selection (sexual dimorphism sensu lato ). These two forms of diversity have inspired vibrant research programmes, yet these fields have largely developed in isolation from one another. Nevertheless, conceptual parallels between these research traditions are striking. Opportunities for local adaptation strike a balance between local selection, which promotes divergence, and gene flow—via dispersal and interbreeding between populations—which constrains it. Sex differences are similarly constrained by fundamental features of inheritance that mimic gene flow. Offspring of each sex inherit genes from same-sex and opposite-sex parents, leading to gene flow between each differentially selected half of the population, and raising the question of how sex differences arise and are maintained. This special issue synthesizes and extends emerging research at the interface between the research traditions of local adaptation and sex differences. Each field can promote understanding of the other, and interactions between local adaptation and sex differences can generate new empirical predictions about the evolutionary consequences of selection that varies across space, time, and between the sexes. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences’.



2020 ◽  
Author(s):  
Hirzi Luqman ◽  
Alex Widmer ◽  
Simone Fior ◽  
Daniel Wegmann

AbstractAdaptive genetic variation is a function of both selective and neutral forces. In order to accurately identify adaptive loci, it is hence critical to account for demographic history. Theory suggests that signatures of selection can be inferred using the coalescent, following the premise that the genealogies of selected loci deviate from neutral expectations. Here, we build on this theory to develop an analytical framework to identify Loci under Selection via explicit Demographic models (LSD). Under this framework, signatures of selection are inferred by demographic parameters, rather than through isolated summary statistics, and demographic history is accounted for explicitly. Given that demographic models can incorporate directionality, we show that LSD can provide information on the environment in which selection acts on a population. This can prove useful in dissecting the genomics of local adaptation, by characterising genetic trade-offs and extending the concepts of antagonistic pleiotropy and conditional neutrality from ecological theory to practical application in genomic data. We implement LSD via Approximate Bayesian Computation and demonstrate, via simulations, that LSD has high power to identify selected loci across a large range of demographic-selection regimes, including complex demographies, and that the directionality of selection can be inferred accurately for identified candidates. Using the same simulations, we further characterise the behaviour of isolation-with-migration models conducive to the study of local adaptation under regimes of selection. Finally, we apply LSD to the detection and characterisation of loci underlying floral guides in Antirrhinum majus, and find consistent results with previous studies.



2018 ◽  
Vol 373 (1757) ◽  
pp. 20170423 ◽  
Author(s):  
Tim Connallon ◽  
Colin Olito ◽  
Ludovic Dutoit ◽  
Homa Papoli ◽  
Filip Ruzicka ◽  
...  

Spatially varying selection with gene flow can favour the evolution of inversions that bind locally adapted alleles together, facilitate local adaptation and ultimately drive genomic divergence between species. Several studies have shown that the rates of spread and establishment of new inversions capturing locally adaptive alleles depend on a suite of evolutionary factors, including the strength of selection for local adaptation, rates of gene flow and recombination, and the deleterious mutation load carried by inversions. Because the balance of these factors is expected to differ between X (or Z) chromosomes and autosomes, opportunities for inversion evolution are likely to systematically differ between these genomic regions, though such scenarios have not been formally modelled. Here, we consider the evolutionary dynamics of X-linked and autosomal inversions in populations evolving at a balance between migration and local selection. We identify three factors that lead to asymmetric rates of X-linked and autosome inversion establishment: (1) sex-biased migration, (2) dominance of locally adapted alleles and (3) chromosome-specific deleterious mutation loads. This theory predicts an elevated rate of fixation, and depressed opportunities for polymorphism, for X-linked inversions. Our survey of data on the genomic distribution of polymorphic and fixed inversions supports both theoretical predictions. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences'.



2014 ◽  
Vol 7 (4) ◽  
pp. 442-452 ◽  
Author(s):  
Isabelle Glais ◽  
Josselin Montarry ◽  
Roselyne Corbière ◽  
Claudine Pasco ◽  
Bruno Marquer ◽  
...  


2019 ◽  
Author(s):  
Perrier Charles ◽  
Rougemont Quentin ◽  
Charmantier Anne

AbstractUnderstanding the genomic processes underlying local adaptation is a central aim of modern evolutionary biology. This task requires identifying footprints of local selection but also estimating spatio-temporal variation in population demography and variation in recombination rate and diversity along the genome. Here, we investigated these parameters in blue tit populations inhabiting deciduous versus evergreen forests and insular versus mainland areas, in the context of a previously described strong phenotypic differentiation. Neighboring population pairs of deciduous and evergreen habitats were weakly genetically differentiated (FST = 0.004 on average), nevertheless with a statistically significant effect of habitat type on the overall genetic structure. This low differentiation was consistent with the strong and long-lasting gene flow between populations, inferred by demographic modeling. In turn, insular and mainland populations were moderately differentiated (FST = 0.08 on average), in line with the inference of moderate ancestral migrations, followed by isolation since the end of the last glaciation. Effective population sizes were overall large, yet smaller on the island than on the mainland. Weak and non-parallel footprints of divergent selection between deciduous and evergreen populations were consistent with their high connectivity and the probable polygenic nature of local adaptation in these habitats. In turn, stronger footprints of divergent selection were identified between long isolated insular versus mainland birds, and were more often found in regions of low recombination as expected from theory. Lastly, we identified a genomic inversion on the mainland, spanning 2.8Mb. These results provide insights into the demographic history and genetic architecture of local adaptation in blue tit populations at multiple geographic scales.



2021 ◽  
Author(s):  
Nan Lin ◽  
Jacob B. Landis ◽  
Yanxia Sun ◽  
Xianhan Huang ◽  
Xu Zhang ◽  
...  


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Damiano Porcelli ◽  
Anja M. Westram ◽  
Marta Pascual ◽  
Kevin J. Gaston ◽  
Roger K. Butlin ◽  
...  


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Fan Jiang ◽  
Ruiyi Lin ◽  
Changyi Xiao ◽  
Tanghui Xie ◽  
Yaoxin Jiang ◽  
...  

Abstract Background The most prolific duck genetic resource in the world is located in Southeast/South Asia but little is known about the domestication and complex histories of these duck populations. Results Based on whole-genome resequencing data of 78 ducks (Anas platyrhynchos) and 31 published whole-genome duck sequences, we detected three geographic distinct genetic groups, including local Chinese, wild, and local Southeast/South Asian populations. We inferred the demographic history of these duck populations with different geographical distributions and found that the Chinese and Southeast/South Asian ducks shared similar demographic features. The Chinese domestic ducks experienced the strongest population bottleneck caused by domestication and the last glacial maximum (LGM) period, whereas the Chinese wild ducks experienced a relatively weak bottleneck caused by domestication only. Furthermore, the bottleneck was more severe in the local Southeast/South Asian populations than in the local Chinese populations, which resulted in a smaller effective population size for the former (7100–11,900). We show that extensive gene flow has occurred between the Southeast/South Asian and Chinese populations, and between the Southeast Asian and South Asian populations. Prolonged gene flow was detected between the Guangxi population from China and its neighboring Southeast/South Asian populations. In addition, based on multiple statistical approaches, we identified a genomic region that included three genes (PNPLA8, THAP5, and DNAJB9) on duck chromosome 1 with a high probability of gene flow between the Guangxi and Southeast/South Asian populations. Finally, we detected strong signatures of selection in genes that are involved in signaling pathways of the nervous system development (e.g., ADCYAP1R1 and PDC) and in genes that are associated with morphological traits such as cell growth (e.g., IGF1R). Conclusions Our findings provide valuable information for a better understanding of the domestication and demographic history of the duck, and of the gene flow between local duck populations from Southeast/South Asia and China.



Sign in / Sign up

Export Citation Format

Share Document