scholarly journals CexE Is A Virulence Factor ofCitrobacter rodentiumAnd Present In Enteric Pathogens Of Humans

2018 ◽  
Author(s):  
Zachary Rivas ◽  
Ryan M. McCormack ◽  
Becky Adkins ◽  
George P. Munson

AbstractCexE is a 12 kDa protein that was originally reported to be present in just three strains of enterotoxigenicEscherichia coli(ETEC); a frequent causes of diarrheal illnesses worldwide. However, an examination of recently sequenced genomes has revealed that CexE is actually present in a majority of ETEC strains. Homologs of CexE are also present in enteroaggregativeE. coli(EAEC) and other enteric pathogens includingYersinia enterocolitica, Providencia alcalifaciens, andCitrobacter rodentium. CexE and its homologs are expressed within virulence regulons of ETEC, EAEC, andC. rodentium. This, along with its distribution across several species of enteric pathogens, suggest that CexE confers a selective advantage to these pathogens. However, this hypothesis has yet to be testedin vivo. Here we demonstrate that CexE is conditionally secreted to the external leaf of the outer membrane of ETEC. Although CexE does not appear to play a role in adherencein vitro, it does facilitate colonization of murine intestinal tissues byC. rodentium in vivo. In adult mice wild-type bacteria reached significantly higher loads and were shed in higher numbers than acexE::kanmutant. A similar trend was observed in neonatal mice. In addition, all of the neonates infected with the wild-type strain succumbed to infection within 16 days of inoculation. In contrast, 45% of the neonates infected with thecexE::kanstrain survived for the 30 day duration of the experiment. These finding indicate that CexE is a conditionally secreted virulence factor that increases the colonization of hosts by enteric pathogens.

2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Monchaya Rattanaprasert ◽  
Jan-Peter van Pijkeren ◽  
Amanda E. Ramer-Tait ◽  
Maria Quintero ◽  
Car Reen Kok ◽  
...  

ABSTRACT Strains of Lactobacillus reuteri are commonly used as probiotics due to their demonstrated therapeutic properties. Many strains of L. reuteri also utilize the prebiotic galactooligosaccharide (GOS), providing a basis for formulating synergistic synbiotics that could enhance growth or persistence of this organism in vivo. In this study, in-frame deletion mutants were constructed to characterize the molecular basis of GOS utilization in L. reuteri ATCC PTA-6475. Results suggested that GOS transport relies on a permease encoded by lacS, while a second unidentified protein may function as a galactoside transporter. Two β-galactosidases, encoded by lacA and lacLM, sequentially degrade GOS oligosaccharides and GOS disaccharides, respectively. Inactivation of lacL and lacM resulted in impaired growth in the presence of GOS and lactose. In vitro competition experiments between the wild-type and ΔlacS ΔlacM strains revealed that the GOS-utilizing genes conferred a selective advantage in media with GOS but not glucose. GOS also provided an advantage to the wild-type strain in experiments in gnotobiotic mice but only on a purified, no sucrose diet. Differences in cell numbers between GOS-fed mice and mice that did not receive GOS were small, suggesting that carbohydrates other than GOS were sufficient to support growth. On a complex diet, the ΔlacS ΔlacM strain was outcompeted by the wild-type strain in gnotobiotic mice, suggesting that lacL and lacM are involved in the utilization of alternative dietary carbohydrates. Indeed, the growth of the mutants was impaired in raffinose and stachyose, which are common in plants, demonstrating that α-galactosides may constitute alternate substrates of the GOS pathway. IMPORTANCE This study shows that lac genes in Lactobacillus reuteri encode hydrolases and transporters that are necessary for the metabolism of GOS, as well as α-galactoside substrates. Coculture experiments with the wild-type strain and a gos mutant clearly demonstrated that GOS utilization confers a growth advantage in medium containing GOS as the sole carbohydrate source. However, the wild-type strain also outcompeted the mutant in germfree mice, suggesting that GOS genes in L. reuteri also provide a basis for utilization of other carbohydrates, including α-galactosides, ordinarily present in the diets of humans and other animals. Collectively, our work provides information on the metabolism of L. reuteri in its natural niche in the gut and may provide a basis for the development of synbiotic strategies.


Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1399-1407 ◽  
Author(s):  
Astrid de Greeff ◽  
Andrea Hamilton ◽  
Iain C. Sutcliffe ◽  
Herma Buys ◽  
Loek van Alphen ◽  
...  

This paper reports the complete coding sequence for a proliprotein signal peptidase (SP-ase) of Streptococcus suis, Lsp. This is believed to be the first SP-ase described for S. suis. SP-ase II is involved in the removal of the signal peptide from glyceride-modified prolipoproteins. By using in vitro transcription/translation systems, it was shown that the lsp gene was transcribed in vitro. Functionality of Lsp in Escherichia coli was demonstrated by using an in vitro globomycin resistance assay, to show that expression of Lsp in E. coli increased the globomycin resistance. An isogenic mutant of S. suis serotype 2 unable to produce Lsp was constructed and shown to process lipoproteins incorrectly, including an S. suis homologue of the pneumococcal PsaA lipoprotein. Five piglets were inoculated with a mixture of both strains in an experimental infection, to determine the virulence of the mutant strain relative to that of the wild-type strain in a competitive challenge experiment. The data showed that both strains were equally virulent, indicating that the knockout mutant of lsp is not attenuated in vivo.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


2006 ◽  
Vol 50 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Daniel Criswell ◽  
Virginia L. Tobiason ◽  
J. Stephen Lodmell ◽  
D. Scott Samuels

ABSTRACT We have isolated and characterized in vitro mutants of the Lyme disease agent Borrelia burgdorferi that are resistant to spectinomycin, kanamycin, gentamicin, or streptomycin, antibiotics that target the small subunit of the ribosome. 16S rRNA mutations A1185G and C1186U, homologous to Escherichia coli nucleotides A1191 and C1192, conferred >2,200-fold and 1,300-fold resistance to spectinomycin, respectively. A 16S rRNA A1402G mutation, homologous to E. coli A1408, conferred >90-fold resistance to kanamycin and >240-fold resistance to gentamicin. Two mutations were identified in the gene for ribosomal protein S12, at a site homologous to E. coli residue Lys-87, in mutants selected in streptomycin. Substitutions at codon 88, K88R and K88E, conferred 7-fold resistance and 10-fold resistance, respectively, to streptomycin on B. burgdorferi. The 16S rRNA A1185G and C1186U mutations, associated with spectinomycin resistance, appeared in a population of B. burgdorferi parental strain B31 at a high frequency of 6 × 10−6. These spectinomycin-resistant mutants successfully competed with the wild-type strain during 100 generations of coculture in vitro. The aminoglycoside-resistant mutants appeared at a frequency of 3 × 10−9 to 1 ×10−7 in a population and were unable to compete with wild-type strain B31 after 100 generations. This is the first description of mutations in the B. burgdorferi ribosome that confer resistance to antibiotics. These results have implications for the evolution of antibiotic resistance, because the 16S rRNA mutations conferring spectinomycin resistance have no significant fitness cost in vitro, and for the development of new selectable markers.


2019 ◽  
Vol 7 (3) ◽  
pp. 81 ◽  
Author(s):  
Nikolay Rovinskiy ◽  
Andrews Agbleke ◽  
Olga Chesnokova ◽  
N. Higgins

Prokaryotes have an essential gene—gyrase—that catalyzes negative supercoiling of plasmid and chromosomal DNA. Negative supercoils influence DNA replication, transcription, homologous recombination, site-specific recombination, genetic transposition and sister chromosome segregation. Although E. coli and Salmonella Typhimurium are close relatives with a conserved set of essential genes, E. coli DNA has a supercoil density 15% higher than Salmonella, and E. coli cannot grow at the supercoil density maintained by wild type (WT) Salmonella. E. coli is addicted to high supercoiling levels for efficient chromosomal folding. In vitro experiments were performed with four gyrase isoforms of the tetrameric enzyme (GyrA2:GyrB2). E. coli gyrase was more processive and faster than the Salmonella enzyme, but Salmonella strains with chromosomal swaps of E. coli GyrA lost 40% of the chromosomal supercoil density. Reciprocal experiments in E. coli showed chromosomal dysfunction for strains harboring Salmonella GyrA. One GyrA segment responsible for dis-regulation was uncovered by constructing and testing GyrA chimeras in vivo. The six pinwheel elements and the C-terminal 35–38 acidic residues of GyrA controlled WT chromosome-wide supercoiling density in both species. A model of enzyme processivity modulated by competition between DNA and the GyrA acidic tail for access to β-pinwheel elements is presented.


2006 ◽  
Vol 393 (3) ◽  
pp. 767-777 ◽  
Author(s):  
Peng Guo ◽  
Liqiang Zhang ◽  
Hongjie Zhang ◽  
Yanming Feng ◽  
Guozhong Jing

RRF (ribosome recycling factor) consists of two domains, and in concert with EF-G (elongation factor-G), triggers dissociation of the post-termination ribosomal complex. However, the function of the individual domains of RRF remains unclear. To clarify this, two RRF chimaeras, EcoDI/TteDII and TteDI/EcoDII, were created by domain swaps between the proteins from Escherichia coli and Thermoanaerobacter tengcongensis. The ribosome recycling activity of the RRF chimaeras was compared with their wild-type RRFs by using in vivo and in vitro activity assays. Like wild-type TteRRF (T. tengcongensis RRF), the EcoDI/TteDII chimaera is non-functional in E. coli, but both wild-type TteRRF, and EcoDI/TteDII can be activated by coexpression of T. tengcongensis EF-G in E. coli. By contrast, like wild-type E. coli RRF (EcoRRF), TteDI/EcoDII is fully functional in E. coli. These findings suggest that domain II of RRF plays a crucial role in the concerted action of RRF and EF-G for the post-termination complex disassembly, and the specific interaction between RRF and EF-G on ribosomes mainly depends on the interaction between domain II of RRF and EF-G. This study provides direct genetic and biochemical evidence for the function of the individual domains of RRF.


2013 ◽  
Vol 58 (3) ◽  
pp. 1671-1677 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTDoripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolatesin vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producingKlebsiella pneumoniaeand eight clinical NDM-1-producing members of the familyEnterobacteriaceaewere tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despitein vitroresistance, ≥1-log10CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producingEnterobacteriaceae.


2001 ◽  
Vol 183 (7) ◽  
pp. 2259-2264 ◽  
Author(s):  
Yan Wei ◽  
Amy C. Vollmer ◽  
Robert A. LaRossa

ABSTRACT Mitomycin C (MMC), a DNA-damaging agent, is a potent inducer of the bacterial SOS response; surprisingly, it has not been used to select resistant mutants from wild-type Escherichia coli. MMC resistance is caused by the presence of any of four distinctE. coli genes (mdfA, gyrl, rob, andsdiA) on high-copy-number vectors. mdfAencodes a membrane efflux pump whose overexpression results in broad-spectrum chemical resistance. The gyrI (also called sbmC) gene product inhibits DNA gyrase activity in vitro, while the rob protein appears to function in transcriptional activation of efflux pumps. SdiA is a transcriptional activator of ftsQAZ genes involved in cell division.


2005 ◽  
Vol 79 (24) ◽  
pp. 15054-15063 ◽  
Author(s):  
A. Lissenberg ◽  
M. M. Vrolijk ◽  
A. L. W. van Vliet ◽  
M. A. Langereis ◽  
J. D. F. de Groot-Mijnes ◽  
...  

ABSTRACT Group 2 coronaviruses encode an accessory envelope glycoprotein species, the hemagglutinin esterase (HE), which possesses sialate-O-acetylesterase activity and which, presumably, promotes virus spread and entry in vivo by facilitating reversible virion attachment to O-acetylated sialic acids. While HE may provide a strong selective advantage during natural infection, many laboratory strains of mouse hepatitis virus (MHV) fail to produce the protein. Apparently, their HE genes were inactivated during cell culture adaptation. For this report, we have studied the molecular basis of this phenomenon. By using targeted RNA recombination, we generated isogenic recombinant MHVs which differ exclusively in their expression of HE and produce either the wild-type protein (HE+), an enzymatically inactive HE protein (HE0), or no HE at all. HE expression or the lack thereof did not lead to gross differences in in vitro growth properties. Yet the expression of HE was rapidly lost during serial cell culture passaging. Competition experiments with mixed infections revealed that this was not due to the enzymatic activity: MHVs expressing HE+ or HE0 propagated with equal efficiencies. During the propagation of recombinant MHV-HE+, two types of spontaneous mutants accumulated. One produced an anchorless HE, while the other had a Gly-to-Trp substitution at the predicted C-terminal residue of the HE signal peptide. Neither mutant incorporated HE into virion particles, suggesting that wild-type HE reduces the in vitro propagation efficiency, either at the assembly stage or at a postassembly level. Our findings demonstrate that the expression of “luxury” proteins may come at a fitness penalty. Apparently, under natural conditions the costs of maintaining HE are outweighed by the benefits.


Sign in / Sign up

Export Citation Format

Share Document