scholarly journals Brain dynamics and temporal trajectories during task and naturalistic processing

2018 ◽  
Author(s):  
Manasij Venkatesh ◽  
Joseph Jaja ◽  
Luiz Pessoa

AbstractHuman functional Magnetic Resonance Imaging (fMRI) data are acquired while participants engage in diverse perceptual, motor, cognitive, and emotional tasks. Although data are acquired temporally, they are most often treated in a quasi-static manner. Yet, a fuller understanding of the mechanisms that support mental functions necessitates the characterization of dynamic properties. Here, we describe an approach employing a class of recurrent neural networks called reservoir computing, and show the feasibility and potential of using it for the analysis of temporal properties of brain data. We show that reservoirs can be used effectively both for condition classification and for characterizing lower-dimensional “trajectories” of temporal data. Classification accuracy was approximately 90% for short clips of “social interactions” and around 70% for clips extracted from movie segments. Data representations with 12 or fewer dimensions (from an original space with over 300) attained classification accuracy within 5% of the full data. We hypothesize that such low-dimensional trajectories may provide “signatures” that can be associated with tasks and/or mental states. The approach was applied across participants (that is, training in one set of participants, and testing in a separate group), showing that representations generalized well to unseen participants. Taken together, we believe the present approach provides a promising framework to characterize dynamic fMRI information during both tasks and naturalistic conditions.

Author(s):  
Amal Alzain ◽  
Suhaib Alameen ◽  
Rani Elmaki ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the brain tissues to ischemic stroke, gray matter, white matter and CSF using texture analysisto extract classification features from CT images. The First Order Statistic techniques included sevenfeatures. To find the gray level variation in CT images it complements the FOS features extracted from CT images withgray level in pixels and estimate the variation of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level of images. The results show that the Gray Level variation and   features give classification accuracy of ischemic stroke 97.6%, gray matter95.2%, white matter 97.3% and the CSF classification accuracy 98.0%. The overall classification accuracy of brain tissues 97.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate brain tissues names.


Author(s):  
Mona E. Elbashier ◽  
Suhaib Alameen ◽  
Caroline Edward Ayad ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the pancreas areato head, body and tail using Gray Level Run Length Matrix (GLRLM) and extract classification features from CT images. The GLRLM techniques included eleven’s features. To find the gray level distribution in CT images it complements the GLRLM features extracted from CT images with runs of gray level in pixels and estimate the size distribution of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level distribution of images. The results show that the Gray Level Run Length Matrix and  features give classification accuracy of pancreashead 89.2%, body 93.6 and the tail classification accuracy 93.5%. The overall classification accuracy of pancreas area 92.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate pancreas area names.


Author(s):  
Ralph Wedgwood

Internalism implies that rationality requires nothing more than what in the broadest sense counts as ‘coherence’. The earlier chapters of this book argue that rationality is in a strong sense normative. But why does coherence matter? The interpretation of this question is clarified. An answer to the question would involve a general characterization of rationality that makes it intuitively less puzzling why rationality is in this strong sense normative. Various approaches to this question are explored: a deflationary approach, the appeal to ‘Dutch book’ theorems, the idea that rationality is constitutive of the nature of mental states. It is argued that none of these approaches solves the problem. An adequate solution will have to appeal to some value that depends partly on how things are in the external world—in effect, an external goal—and some normatively significant connection between internal rationality and this external goal.


2021 ◽  
Author(s):  
Zenita Adhireksan ◽  
Deepti Sharma ◽  
Phoi Leng Lee ◽  
Qiuye Bao ◽  
Sivaraman Padavattan ◽  
...  

Abstract Structural characterization of chromatin is challenging due to conformational and compositional heterogeneity in vivo and dynamic properties that limit achievable resolution in vitro. Although the maximum resolution for solving structures of large macromolecular assemblies by electron microscopy has recently undergone profound increases, X-ray crystallographic approaches may still offer advantages for certain systems. One such system is compact chromatin, wherein the crystalline state recapitulates the crowded molecular environment within the nucleus. Here we show that nucleosomal constructs with cohesive-ended DNA can be designed that assemble into different types of circular configurations or continuous fibers extending throughout crystals. We demonstrate the utility of the method for characterizing nucleosome compaction and linker histone binding at near-atomic resolution but also advance its application for tackling further problems in chromatin structural biology and for generating novel types of DNA nanostructures. We provide a library of cohesive-ended DNA fragment expression constructs and a strategy for engineering DNA-based nanomaterials with a seemingly vast potential variety of architectures and histone chemistries.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1207
Author(s):  
Gabrielle Foran ◽  
Nina Verdier ◽  
David Lepage ◽  
Cédric Malveau ◽  
Nicolas Dupré ◽  
...  

Solid-state NMR spectroscopy is an established experimental technique which is used for the characterization of structural and dynamic properties of materials in their native state. Many types of solid-state NMR experiments have been used to characterize both lithium-based and sodium-based solid polymer and polymer–ceramic hybrid electrolyte materials. This review describes several solid-state NMR experiments that are commonly employed in the analysis of these systems: pulse field gradient NMR, electrophoretic NMR, variable temperature T1 relaxation, T2 relaxation and linewidth analysis, exchange spectroscopy, cross polarization, Rotational Echo Double Resonance, and isotope enrichment. In this review, each technique is introduced with a short description of the pulse sequence, and examples of experiments that have been performed in real solid-state polymer and/or hybrid electrolyte systems are provided. The results and conclusions of these experiments are discussed to inform readers of the strengths and weaknesses of each technique when applied to polymer and hybrid electrolyte systems. It is anticipated that this review may be used to aid in the selection of solid-state NMR experiments for the analysis of these systems.


2008 ◽  
Vol 59 (3) ◽  
pp. 204-212 ◽  
Author(s):  
G. Alejandra Camacho-Bragado ◽  
Jose Luis Elechiguerra ◽  
Miguel Jose Yacaman

2021 ◽  
Author(s):  
Christina Tsai ◽  
Kuang-Ting Wu

<p>It is demonstrated that turbulent boundary layers are populated by a hierarchy of recurrent structures, normally referred to as the coherent structures. Thus, it is desirable to gain a better understanding of the spatial-temporal characteristics of coherent structures and their impact on fluid particles. Furthermore, the ejection and sweep events play an important role in turbulent statistics. Therefore, this study focuses on the characterizations of flow particles under the influence of the above-mentioned two structures.</p><div><span>With regard to the geometry of turbulent structures, </span><span>Meinhart & Adrian (1995) </span>first highlighted the existence of large and irregularly shaped regions of uniform streamwise momentum zone (hereafter referred to as a uniform momentum zone, or UMZs), regions of relatively similar streamwise velocity with coherence in the streamwise and wall-normal directions.  <span>Subsequently, </span><span>de Silva et al. (2017) </span><span>provided a detection criterion that had previously been utilized to locate the uniform momentum zones (UMZ) and demonstrated the application of this criterion to estimate the spatial locations of the edges that demarcates UMZs.</span></div><div> </div><div>In this study, detection of the existence of UMZs is a pre-process of identifying the coherent structures. After the edges of UMZs are determined, the identification procedure of ejection and sweep events from turbulent flow DNS data should be defined. As such, an integrated criterion of distinguishing ejection and sweep events is proposed. Based on the integrated criterion, the statistical characterizations of coherent structures from available turbulent flow data such as event durations, event maximum heights, and wall-normal and streamwise lengths can be presented.</div>


2017 ◽  
Vol 121 (39) ◽  
pp. 9185-9195 ◽  
Author(s):  
Indra D. Sahu ◽  
Andrew F. Craig ◽  
Megan M. Dunagum ◽  
Robert M. McCarrick ◽  
Gary A. Lorigan

Sign in / Sign up

Export Citation Format

Share Document