scholarly journals Exploration of inositol 1,4,5-trisphosphate (IP3) regulated dynamics of N-terminal domain of IP3 receptor reveals early phase molecular events during receptor activation

2018 ◽  
Author(s):  
Aneesh Chandran ◽  
Xavier Chee ◽  
David L. Prole ◽  
Taufiq Rahman

Inositol 1, 4, 5-trisphosphate (IP3) binding at the N-terminus (NT) of IP3 receptor (IP3R) allosterically triggers the opening of a Ca2+-conducting pore located ~ 100 Å away from the IP3-binding core (IBC). However, the precise mechanism of IP3 binding and correlated domain dynamics in the NT that are central to the IP3R activation, remains unknown. Our all-atom molecular dynamics (MD) simulations recapitulate the characteristic twist motion of the suppresser domain (SD) and reveal correlated ‘clam closure’ dynamics of IBC with IP3-binding, complementing existing suggestions on IP3R activation mechanism. Our study further reveals the existence of inter-domain dynamic correlation in the NT and establishes the SD to be critical for the conformational dynamics of IBC. Also, a tripartite interaction involving Glu283-Arg54-Asp444 at the SD – IBC interface seemed critical for IP3R activation. Intriguingly, during the sub-microsecond long simulation, we observed Arg269 undergoing an SD-dependent flipping of hydrogen bonding between the first and fifth phosphate groups of IP3. This seems to play a major role in determining the IP3 binding affinity of IBC in the presence/absence of the SD. Our study thus provides atomistic details of early molecular events occurring within the NT during and following IP3 binding that lead to channel gating.

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4413
Author(s):  
Giovanny Aguilera-Durán ◽  
Antonio Romo-Mancillas

Vitiligo is a hypopigmentary skin pathology resulting from the death of melanocytes due to the activity of CD8+ cytotoxic lymphocytes and overexpression of chemokines. These include CXCL9, CXCL10, and CXCL11 and its receptor CXCR3, both in peripheral cells of the immune system and in the skin of patients diagnosed with vitiligo. The three-dimensional structure of CXCR3 and CXCL9 has not been reported experimentally; thus, homology modeling and molecular dynamics could be useful for the study of this chemotaxis-promoter axis. In this work, a homology model of CXCR3 and CXCL9 and the structure of the CXCR3/Gαi/0βγ complex with post-translational modifications of CXCR3 are reported for the study of the interaction of chemokines with CXCR3 through all-atom (AA-MD) and coarse-grained molecular dynamics (CG-MD) simulations. AA-MD and CG-MD simulations showed the first activation step of the CXCR3 receptor with all chemokines and the second activation step in the CXCR3-CXCL10 complex through a decrease in the distance between the chemokine and the transmembrane region of CXCR3 and the separation of the βγ complex from the α subunit in the G-protein. Additionally, a general protein–ligand interaction model was calculated, based on known antagonists binding to CXCR3. These results contribute to understanding the activation mechanism of CXCR3 and the design of new molecules that inhibit chemokine binding or antagonize the receptor, provoking a decrease of chemotaxis caused by the CXCR3/chemokines axis.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Matthew D Rosales ◽  
Frank Dean ◽  
Evangelia Kotsikorou

Abstract The GPR119 receptor, a class A G-protein coupled receptor located in the pancreatic β cells, induces insulin production when activated. Due to its specific activity, the pharmaceutical industry has identified GPR119 as a target for the treatment for type 2 diabetes. The lack of a GRP119 crystal structure has hindered the study of the receptor so our laboratory developed GPR119 active and inactive homology models. Docking studies with the inactive receptor model indicated that two leucine residues facing the binding pocket, L5.43(169) and L6.52(242), may be involved in ligand activation. Additionally, a serine at the extracellular end of the pocket, S1.32(4), may help orient of the ligand in the binding pocket via hydrogen bonding. To gain further insight into the role of these residues and the receptor activation mechanism, molecular dynamics (MD) simulations and in vitro cAMP assays of the wild type and mutant receptors were employed. The software NAMD employing the CHARMM force field was used to carry out MD simulations of the active receptor model bound with the agonist AR231453 embedded in a hydrated lipid bilayer. Preliminary results indicate that L6.52(242), located on transmembrane helix (TMH) 6, does not face directly into the binding site and does not interact with the ligand, while L5.43(169), located on TMH5, does face into the binding site, potentially interacting directly with the ligand. Also, S1.32(4), because of its extracellular location, is solvated instead of interacting with the ligand. The in vitro studies overall support the MD simulations. The mutations L6.52(242)M and L6.52(242)A appear to have minimal to no effect on agonist-induced cAMP production, compared to the wild type. In contrast, the L5.43(169)M and L5.43(169)A mutations decrease the potency of activation by AR231453, indicating that L5.43(169) changes the shape of the binding pocket, affecting ligand binding and activation. Finally, the cAMP assays show that the S1.32(4)A mutant also shows decreased activity compared to the wild type, implying that the ligand may be losing a hydrogen bonding interaction when S1.32(4) is mutated to alanine.


2018 ◽  
Author(s):  
Wanling Song ◽  
Hsin-Yung Yen ◽  
Carol V. Robinson ◽  
Mark S.P. Sansom

AbstractG protein-coupled receptors (GPCRs) are the largest family of integral membrane proteins and a major class of drug targets. Membranes are known to have modulatory effects on GPCRs via specific lipid interactions. However, the mechanisms of such modulations in cell membranes and how they influence GPCR functions remain unclear. Here we report coarse-grained MD simulations on the Adenosine A2a receptor embedded in an in vivo mimetic membrane model comprised of 10 different lipid species. Three conformational states of the receptor, i.e. the inactive state, the active state, and the active state with a mini-GS protein bound were simulated to study the impact of protein-lipid interactions on the receptor activation. The simulations revealed three specific lipids (GM3, cholesterol and PIP2) that form stable and preferential interactions with the receptor, differentiating these from bulk lipids such as PS, PE and PC. In total, nine specific lipid-binding sites were revealed. The strength of lipid interaction with these sites depends on the conformational state of the receptor, suggesting that these lipids may regulate the conformational dynamics of the receptor. In particular, we revealed a dual role of PIP2 in promoting A2aR activation, which involves stabilization of both the characteristic outward tilt of helix TM6 within receptor and also the association of A2aR and mini-Gs when the activated complex forms. Structural comparisons suggested that PIP2 may facilitate Gα activation. Our results reveal likely allosteric effects of bound lipids in regulating the functional behaviour of GPCRs, providing a springboard for design of allosteric modulators of these biomedically important receptors.


2018 ◽  
Author(s):  
Daria N. Shalaeva ◽  
Dmitry A. Cherepanov ◽  
Michael Y. Galperin ◽  
Armen Y. Mulkidjanian

AbstractP-loop nucleoside triphosphatases (NTPases) share common Walker A (P-loop) and Walker B sequence motifs and depend on activating moieties (Arg or Lys fingers or a K+ ion). In search for a common catalytic mechanism, we combined structure comparisons of active sites in major classes of P-loop NTPases with molecular dynamics (MD) simulations of the Ras GTPase, a well-studied oncoprotein. Comparative structure analysis showed that positively charged activating moieties interact with gamma-phosphate groups of NTP substrates in all major classes of P-loop NTPases. In MD simulations, interaction of the activating Arg finger with the Mg-GTP-Ras complex led to the rotation of the gamma-phosphate group by 40 degrees enabling its interaction with the backbone amide group of Gly13. In all analyzed structures, the residue that corresponds to Gly13 of Ras was in a position to stabilize gamma-phosphate after its rotation, suggesting a common ancestral activation mechanism within the entire superfamily.


2020 ◽  
Vol 14 (3) ◽  
pp. 216-226
Author(s):  
Priyanka Borah ◽  
Venkata S.K. Mattaparthi

Background: Aggregation of misfolded proteins under stress conditions in the cell might lead to several neurodegenerative disorders. Amyloid-beta (Aβ1-42) peptide, the causative agent of Alzheimer’s disease, has the propensity to fold into β-sheets under stress, forming aggregated amyloid plaques. This is influenced by factors such as pH, temperature, metal ions, mutation of residues, and ionic strength of the solution. There are several studies that have highlighted the importance of ionic strength in affecting the folding and aggregation propensity of Aβ1-42 peptide. Objective: To understand the effect of ionic strength of the solution on the aggregation propensity of Aβ1-42 peptide, using computational approaches. Materials and Methods: In this study, Molecular Dynamics (MD) simulations were performed on Aβ1-42 peptide monomer placed in (i) 0 M, (ii) 0.15 M, and (iii) 0.30 M concentration of NaCl solution. To prepare the input files for the MD simulations, we have used the Amberff99SB force field. The conformational dynamics of Aβ1-42 peptide monomer in different ionic strengths of the solutions were illustrated from the analysis of the corresponding MD trajectory using the CPPtraj tool. Results: From the MD trajectory analysis, we observe that with an increase in the ionic strength of the solution, Aβ1-42 peptide monomer shows a lesser tendency to undergo aggregation. From RMSD and SASA analysis, we noticed that Aβ1-42 peptide monomer undergoes a rapid change in conformation with an increase in the ionic strength of the solution. In addition, from the radius of gyration (Rg) analysis, we observed Aβ1-42 peptide monomer to be more compact at moderate ionic strength of the solution. Aβ1-42 peptide was also found to hold its helical secondary structure at moderate and higher ionic strengths of the solution. The diffusion coefficient of Aβ1-42 peptide monomer was also found to vary with the ionic strength of the solution. We observed a relatively higher diffusion coefficient value for Aβ1-42 peptide at moderate ionic strength of the solution. Conclusion: Our findings from this computational study highlight the marked effect of ionic strength of the solution on the conformational dynamics and aggregation propensity of Aβ1-42 peptide monomer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raghavendar Reddy Sanganna Gari ◽  
Joel José Montalvo‐Acosta ◽  
George R. Heath ◽  
Yining Jiang ◽  
Xiaolong Gao ◽  
...  

AbstractConformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the β-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pH-dependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yogeeshwar Ajjugal ◽  
Kripi Tomar ◽  
D. Krishna Rao ◽  
Thenmalarchelvi Rathinavelan

AbstractBase pair mismatches in DNA can erroneously be incorporated during replication, recombination, etc. Here, the influence of A…A mismatch in the context of 5′CAA·5′TAG sequence is explored using molecular dynamics (MD) simulation, umbrella sampling MD, circular dichroism (CD), microscale thermophoresis (MST) and NMR techniques. MD simulations reveal that the A…A mismatch experiences several transient events such as base flipping, base extrusion, etc. facilitating B–Z junction formation. A…A mismatch may assume such conformational transitions to circumvent the effect of nonisostericity with the flanking canonical base pairs so as to get accommodated in the DNA. CD and 1D proton NMR experiments further reveal that the extent of B–Z junction increases when the number of A…A mismatch in d(CAA)·d(T(A/T)G) increases (1–5). CD titration studies of d(CAA)·d(TAG)n=5 with the hZαADAR1 show the passive binding between the two, wherein, the binding of protein commences with B–Z junction recognition. Umbrella sampling simulation indicates that the mismatch samples anti…+ syn/+ syn…anti, anti…anti & + syn…+ syn glycosyl conformations. The concomitant spontaneous transitions are: a variety of hydrogen bonding patterns, stacking and minor or major groove extrahelical movements (with and without the engagement of hydrogen bonds) involving the mismatch adenines. These transitions frequently happen in anti…anti conformational region compared with the other three regions as revealed from the lifetime of these states. Further, 2D-NOESY experiments indicate that the number of cross-peaks diminishes with the increasing number of A…A mismatches implicating its dynamic nature. The spontaneous extrahelical movement seen in A…A mismatch may be a key pre-trapping event in the mismatch repair due to the accessibility of the base(s) to the sophisticated mismatch repair machinery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mei Dang ◽  
Yifan Li ◽  
Jianxing Song

AbstractTDP-43 and hnRNPA1 contain tandemly-tethered RNA-recognition-motif (RRM) domains, which not only functionally bind an array of nucleic acids, but also participate in aggregation/fibrillation, a pathological hallmark of various human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), alzheimer's disease (AD) and Multisystem proteinopathy (MSP). Here, by DSF, NMR and MD simulations we systematically characterized stability, ATP-binding and conformational dynamics of TDP-43 and hnRNPA1 RRM domains in both tethered and isolated forms. The results reveal three key findings: (1) upon tethering TDP-43 RRM domains become dramatically coupled and destabilized with Tm reduced to only 49 °C. (2) ATP specifically binds TDP-43 and hnRNPA1 RRM domains, in which ATP occupies the similar pockets within the conserved nucleic-acid-binding surfaces, with the affinity slightly higher to the tethered than isolated forms. (3) MD simulations indicate that the tethered RRM domains of TDP-43 and hnRNPA1 have higher conformational dynamics than the isolated forms. Two RRM domains become coupled as shown by NMR characterization and analysis of inter-domain correlation motions. The study explains the long-standing puzzle that the tethered TDP-43 RRM1–RRM2 is particularly prone to aggregation/fibrillation, and underscores the general role of ATP in inhibiting aggregation/fibrillation of RRM-containing proteins. The results also rationalize the observation that the risk of aggregation-causing diseases increases with aging.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1320-1331
Author(s):  
Shahzaib Ahamad ◽  
Hema Kanipakam ◽  
Vijay Kumar ◽  
Dinesh Gupta

MD simulations of TTBK2 mutants to study its impact on stability of the protein.


Sign in / Sign up

Export Citation Format

Share Document