scholarly journals Scalable tagging of endogenous genes by homology-independent intron targeting

2018 ◽  
Author(s):  
Yevgeniy V Serebrenik ◽  
Stephanie E Sansbury ◽  
Saranya Santhosh Kumar ◽  
Jorge Henao-Mejia ◽  
Ophir Shalem

AbstractGenome editing tools have simplified the generation of knock-in gene fusions, yet the requirement for gene-specific homology directed repair (HDR) templates still hinders the scalability of most approaches. Here, we combine intron-based protein trapping with homology independent repair-based editing and demonstrate precise and efficient gene tagging that can be easily scaled due to use of a generic donor. As editing is done in introns, this approach tolerates mutations in the unedited allele, disruptive indels, and allows for flexible donor and sgRNA design.

2021 ◽  
Vol 22 (7) ◽  
pp. 3741
Author(s):  
Nina Reuven ◽  
Julia Adler ◽  
Nadav Myers ◽  
Yosef Shaul

The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 has revolutionized genome editing by providing a simple and robust means to cleave specific genomic sequences. However, introducing templated changes at the targeted site usually requires homology-directed repair (HDR), active in only a small subset of cells in culture. To enrich for HDR-dependent edited cells, we employed a co-editing strategy, editing a gene of interest (GOI) concomitantly with rescuing an endogenous pre-made temperature-sensitive (ts) mutation. By using the repair of the ts mutation as a selectable marker, the selection is “scarless” since editing restores the wild-type (wt) sequence. As proof of principle, we used HEK293 and HeLa cells with a ts mutation in the essential TAF1 gene. CRISPR co-editing of TAF1ts and a GOI resulted in up to 90% of the temperature-resistant cells bearing the desired mutation in the GOI. We used this system to insert large cassettes encoded by plasmid donors and smaller changes encoded by single-stranded oligonucleotide donors (ssODN). Of note, among the genes we edited was the introduction of a T35A mutation in the proteasome subunit PSMB6, which eliminates its caspase-like activity. The edited cells showed a specific reduction in this activity, demonstrating this system’s utility in generating cell lines with biologically relevant mutations in endogenous genes. This approach offers a rapid, efficient, and scarless method for selecting genome-edited cells requiring HDR.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wenzhi Jiang ◽  
Jenifer Bush ◽  
Jen Sheen

The ultimate goal of technology development in genome editing is to enable precisely targeted genomic changes in any cells or organisms. Here we describe protoplast systems for precise and efficient DNA sequence changes with preassembled Cas9 ribonucleoprotein (RNP) complexes in Arabidopsis thaliana, Nicotiana benthamiana, Brassica rapa, and Camelina sativa. Cas9 RNP-mediated gene disruption with dual gRNAs could reach ∼90% indels in Arabidopsis protoplasts. To facilitate facile testing of any Cas9 RNP designs, we developed two GFP reporter genes, which led to sensitive detection of nonhomologous end joining (NHEJ) and homology-directed repair (HDR), with editing efficiency up to 85 and 50%, respectively. When co-transfected with an optimal single-stranded oligodeoxynucleotide (ssODN) donor, precise editing of the AtALS gene via HDR reached 7% by RNPs. Significantly, precise mutagenesis mediated by preassembled primer editor (PE) RNPs led to 50% GFP reporter gene recovery in protoplasts and up to 4.6% editing frequency for the specific AtPDS mutation in the genome. The rapid, versatile and efficient gene editing by CRISPR RNP variants in protoplasts provides a valuable platform for development, evaluation and optimization of new designs and tools in gene and genomic manipulation and is applicable in diverse plant species.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatpong Boontawon ◽  
Takehito Nakazawa ◽  
Chikako Inoue ◽  
Keishi Osakabe ◽  
Moriyuki Kawauchi ◽  
...  

AbstractPleurotus ostreatus is one of the most commercially produced edible mushrooms worldwide. Improved cultivated strains with more useful traits have been obtained using classical breeding, which is laborious and time-consuming. Here, we attempted efficient gene mutagenesis using plasmid-based CRISPR/Cas9 as the first step for non-genetically modified (non-GM) P. ostreatus generation. Plasmids harboring expression cassettes of Cas9 and different single guide RNAs targeting fcy1 and pyrG were individually transferred into fungal protoplasts of the PC9 strain, which generated some strains exhibiting resistance to 5-fluorocytosine and 5-fluoroorotic acid, respectively. Genomic PCR followed by sequencing revealed small insertions/deletions or insertion of a fragment from the plasmid at the target site in some of the drug-resistant strains. The results demonstrated efficient CRISPR/Cas9-assisted genome editing in P. ostreatus, which could contribute to the molecular breeding of non-GM cultivated strains in the future. Furthermore, a mutation in fcy1 via homology-directed repair using this CRISPR/Cas9 system was also efficiently introduced, which could be applied not only for precise gene disruption, but also for insertions leading to heterologous gene expression in this fungus.


2021 ◽  
Vol 7 (7) ◽  
pp. 505
Author(s):  
Ping Zhang ◽  
Yu Wang ◽  
Chenxi Li ◽  
Xiaoyu Ma ◽  
Lan Ma ◽  
...  

Cryptococcus neoformans and Cryptococcus deneoformans are opportunistic fungal pathogens found worldwide that are utilized to reveal mechanisms of fungal pathogenesis. However, their low homologous recombination frequency has greatly encumbered genetic studies. In preliminary work, we described a ‘suicide’ CRISPR-Cas9 system for use in the efficient gene editing of C. deneoformans, but this has not yet been used in the C. neoformans strain. The procedures involved in constructing vectors are time-consuming, whether they involve restriction enzyme-based cloning of donor DNA or the introduction of a target sequence into the gRNA expression cassette via overlap PCR, as are sophisticated, thus impeding their widespread application. Here, we report the optimized and simplified construction method for all-in-one CRISPR-Cas9 vectors that can be used in C. neoformans and C. deneoformans strains respectively, named pNK003 (Genbank: MW938321) and pRH003 (Genbank: KX977486). Taking several gene manipulations as examples, we also demonstrate the accuracy and efficiency of the new simplified all-in-one CRISPR-Cas9 genome editing tools in both Serotype A and Serotype D strains, as well as their ability to eliminate Cas9 and gDNA cassettes after gene editing. We anticipate that the availability of new vectors that can simplify and streamline the technical steps for all-in-one CRISPR-Cas9 construction could accelerate genetic studies of the Cryptococcus species.


2002 ◽  
Vol 29 (10) ◽  
pp. 1217 ◽  
Author(s):  
Chris A. Helliwell ◽  
S. Varsha Wesley ◽  
Anna J. Wielopolska ◽  
Peter M. Waterhouse

A major challenge in the post-genome era of plant biology is to determine the functions of all genes in the plant genome. A straightforward approach to this problem is to reduce or knockout expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study but is limited by gene redundancy, lethal knockouts, non-tagged mutants, and the inability to target the inserted element to a specific gene. The efficacy of gene silencing in plants using inverted-repeat transgene constructs that encode a hairpin RNA (hpRNA) has been demonstrated by a number of groups, and has several advantages over insertional mutagenesis. In this paper we describe two improved pHellsgate vectors that facilitate rapid generation of hpRNA-encoding constructs. pHellsgate 4 allows the production of an hpRNA construct in a single step from a single polymerase chain reaction product, while pHellsgate 8 requires a two-step process via an intermediate vector. We show that these vectors are effective at silencing three endogenous genes in Arabidopsis, FLOWERING LOCUS C, PHYTOENE DESATURASE and ETHYLENE INSENSITIVE 2. We also show that a construct of sequences from two genes silences both genes.


2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2020 ◽  
Vol 6 (15) ◽  
pp. eaaz0051 ◽  
Author(s):  
Xinyu Ling ◽  
Bingteng Xie ◽  
Xiaoqin Gao ◽  
Liying Chang ◽  
Wei Zheng ◽  
...  

Site-specific chemical conjugation of proteins can enhance their therapeutic and diagnostic utility but has seldom been applied to CRISPR-Cas9, which is a rapidly growing field with great therapeutic potential. The low efficiency of homology-directed repair remains a major hurdle in CRISPR-Cas9–mediated precise genome editing, which is limited by low concentration of donor DNA template at the cleavage site. In this study, we have developed methodology to site-specifically conjugate oligonucleotides to recombinant Cas9 protein containing a genetically encoded noncanonical amino acid with orthogonal chemical reactivity. The Cas9-oligonucleotide conjugates recruited an unmodified donor DNA template to the target site through base pairing, markedly increasing homology-directed repair efficiency in both human cell culture and mouse zygotes. These chemically modified Cas9 mutants provide an additional tool, one that is complementary to chemically modified nucleic acids, for improving the utility of CRISPR-Cas9–based genome-editing systems.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhiwei Hu ◽  
Yannan Wang ◽  
Qian Liu ◽  
Yan Qiu ◽  
Zhiyu Zhong ◽  
...  

ABSTRACT Base editing is a powerful genome editing approach that enables single-nucleotide changes without double-stranded DNA breaks (DSBs). However, off-target effects as well as other undesired editings at on-target sites remain obstacles for its application. Here, we report that bubble hairpin single guide RNAs (BH-sgRNAs), which contain a hairpin structure with a bubble region on the 5′ end of the guide sequence, can be efficiently applied to both cytosine base editor (CBE) and adenine base editor (ABE) and significantly decrease off-target editing without sacrificing on-target editing efficiency. Meanwhile, such a design also improves the purity of C-to-T conversions induced by base editor 3 (BE3) at on-target sites. Our results present a distinctive and effective strategy to improve the specificity of base editing. IMPORTANCE Base editors are DSB-free genome editing tools and have been widely used in diverse living systems. However, it is reported that these tools can cause substantial off-target editings. To meet this challenge, we developed a new approach to improve the specificity of base editors by using hairpin sgRNAs with a bubble. Furthermore, our sgRNA design also dramatically reduced indels and unwanted base substitutions at on-target sites. We believe that the BH-sgRNA design is a significant improvement over existing sgRNAs of base editors, and our design promises to be adaptable to various base editors. We expect that it will make contributions to improving the safety of gene therapy.


Author(s):  
Yoo Kyung Kang ◽  
Ju Hee Lee ◽  
San Hae Im ◽  
Joo Hoon Lee ◽  
Juhee Jeong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document