scholarly journals Long-read based assembly and annotation of a Drosophila simulans genome

2018 ◽  
Author(s):  
Pierre Nouhaud

AbstractLong-read sequencing technologies enable high-quality, contiguous genome assemblies. Here we used SMRT sequencing to assemble the genome of a Drosophila simulans strain originating from Madagascar, the ancestral range of the species. We generated 8 Gb of raw data (~50× coverage) with a mean read length of 6,410 bp, a NR50 of 9,125 bp and the longest subread at 49 kb. We benchmarked six different assemblers and merged the best two assemblies from Canu and Falcon. Our final assembly was 127.41 Mb with a N50 of 5.38 Mb and 305 contigs. We anchored more than 4 Mb of novel sequence to the major chromosome arms, and significantly improved the assembly of peri-centromeric and telomeric regions. Finally, we performed full-length transcript sequencing and used this data in conjunction with short-read RNAseq data to annotate 13,422 genes in the genome, improving the annotation in regions with complex, nested gene structures.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2020 ◽  
Author(s):  
Lauren Coombe ◽  
Vladimir Nikolić ◽  
Justin Chu ◽  
Inanc Birol ◽  
René L. Warren

AbstractSummaryThe ability to generate high-quality genome sequences is cornerstone to modern biological research. Even with recent advancements in sequencing technologies, many genome assemblies are still not achieving reference-grade. Here, we introduce ntJoin, a tool that leverages structural synteny between a draft assembly and reference sequence(s) to contiguate and correct the former with respect to the latter. Instead of alignments, ntJoin uses a lightweight mapping approach based on a graph data structure generated from ordered minimizer sketches. The tool can be used in a variety of different applications, including improving a draft assembly with a reference-grade genome, a short read assembly with a draft long read assembly, and a draft assembly with an assembly from a closely-related species. When scaffolding a human short read assembly using the reference human genome or a long read assembly, ntJoin improves the NGA50 length 23- and 13-fold, respectively, in under 13 m, using less than 11 GB of RAM. Compared to existing reference-guided assemblers, ntJoin generates highly contiguous assemblies faster and using less memory.Availability and implementationntJoin is written in C++ and Python, and is freely available at https://github.com/bcgsc/[email protected]


2020 ◽  
Author(s):  
Yuya Kiguchi ◽  
Suguru Nishijima ◽  
Naveen Kumar ◽  
Masahira Hattori ◽  
Wataru Suda

Abstract Background: The ecological and biological features of the indigenous phage community (virome) in the human gut microbiome are poorly understood, possibly due to many fragmented contigs and fewer complete genomes based on conventional short-read metagenomics. Long-read sequencing technologies have attracted attention as an alternative approach to reconstruct long and accurate contigs from microbial communities. However, the impact of long-read metagenomics on human gut virome analysis has not been well evaluated. Results: Here we present chimera-less PacBio long-read metagenomics of multiple displacement amplification (MDA)-treated human gut virome DNA. The method included the development of a novel bioinformatics tool, SACRA (Split Amplified Chimeric Read Algorithm), which efficiently detects and splits numerous chimeric reads in PacBio reads from the MDA-treated virome samples. SACRA treatment of PacBio reads from five samples markedly reduced the average chimera ratio from 72 to 1.5%, generating chimera-less PacBio reads with an average read-length of 1.8 kb. De novo assembly of the chimera-less long reads generated contigs with an average N50 length of 11.1 kb, whereas those of MiSeq short reads from the same samples were 0.7 kb, dramatically improving contig extension. Alignment of both contig sets generated 378 high-quality merged contigs (MCs) composed of the minimum scaffolds of 434 MiSeq and 637 PacBio contigs, respectively, and also identified numerous MiSeq short fragmented contigs ≤500 bp additionally aligned to MCs, which possibly originated from a small fraction of MiSeq chimeric reads. The alignment also revealed that fragmentations of the scaffolded MiSeq contigs were caused primarily by genomic complexity of the community, including local repeats, hypervariable regions, and highly conserved sequences in and between the phage genomes. We identified 142 complete and near-complete phage genomes including 108 novel genomes, varying from 5 to 185 kb in length, the majority of which were predicted to be Microviridae phages including several variants with homologous but distinct genomes, which were fragmented in MiSeq contigs. Conclusions: Long-read metagenomics coupled with SACRA provides an improved method to reconstruct accurate and extended phage genomes from MDA-treated virome samples of the human gut, and potentially from other environmental virome samples.


2021 ◽  
Author(s):  
Arang Rhie ◽  
Ann Mc Cartney ◽  
Kishwar Shafin ◽  
Michael Alonge ◽  
Andrey Bzikadze ◽  
...  

Abstract Advances in long-read sequencing technologies and genome assembly methods have enabled the recent completion of the first Telomere-to-Telomere (T2T) human genome assembly, which resolves complex segmental duplications and large tandem repeats, including centromeric satellite arrays in a complete hydatidiform mole (CHM13). Though derived from highly accurate sequencing, evaluation revealed that the initial T2T draft assembly had evidence of small errors and structural misassemblies. To correct these errors, we designed a novel repeat-aware polishing strategy that made accurate assembly corrections in large repeats without overcorrection, ultimately fixing 51% of the existing errors and improving the assembly QV to 73.9. By comparing our results to standard automated polishing tools, we outline common polishing errors and offer practical suggestions for genome projects with limited resources. We also show how sequencing biases in both PacBio HiFi and Oxford Nanopore Technologies reads cause signature assembly errors that can be corrected with a diverse panel of sequencing technologies


2021 ◽  
Author(s):  
Katarina C. Stuart ◽  
Richard J. Edwards ◽  
Yuanyuan Cheng ◽  
Wesley C. Warren ◽  
David W. Burt ◽  
...  

AbstractThe European starling, Sturnus vulgaris, is an ecologically significant, globally invasive avian species that is also suffering from a major decline in its native range. Here, we present the genome assembly and long-read transcriptome of an Australian-sourced European starling (S. vulgaris vAU), and a second North American genome (S. vulgaris vNA), as complementary reference genomes for population genetic and evolutionary characterisation. S. vulgaris vAU combined 10x Genomics linked-reads, low-coverage Nanopore sequencing, and PacBio Iso-Seq full-length transcript scaffolding to generate a 1050 Mb assembly on 1,628 scaffolds (72.5 Mb scaffold N50). Species-specific transcript mapping and gene annotation revealed high structural and functional completeness (94.6% BUSCO completeness). Further scaffolding against the high-quality zebra finch (Taeniopygia guttata) genome assigned 98.6% of the assembly to 32 putative nuclear chromosome scaffolds. Rapid, recent advances in sequencing technologies and bioinformatics software have highlighted the need for evidence-based assessment of assembly decisions on a case-by-case basis. Using S. vulgaris vAU, we demonstrate how the multifunctional use of PacBio Iso-Seq transcript data and complementary homology-based annotation of sequential assembly steps (assessed using a new tool, SAAGA) can be used to assess, inform, and validate assembly workflow decisions. We also highlight some counter-intuitive behaviour in traditional BUSCO metrics, and present BUSCOMP, a complementary tool for assembly comparison designed to be robust to differences in assembly size and base-calling quality. Finally, we present a second starling assembly, S. vulgaris vNA, to facilitate comparative analysis and global genomic research on this ecologically important species.


2019 ◽  
Author(s):  
Patrick J. Monnahan ◽  
Jean-Michel Michno ◽  
Christine H. O’Connor ◽  
Alex B. Brohammer ◽  
Nathan M. Springer ◽  
...  

AbstractBackgroundAdvances in sequencing technologies have led to the release of reference genomes and annotations for multiple individuals within more well-studied systems. While each of these new genome assemblies shares significant portions of synteny between each other, the annotated structure of gene models within these regions can differ. Of particular concern are split-gene misannotations, in which a single gene is incorrectly annotated as two distinct genes or two genes are incorrectly annotated as a single gene. These misannotations can have major impacts on functional prediction, estimates of expression, and many downstream analyses.ResultsWe developed a high-throughput method based on pairwise comparisons of annotations that detect potential split-gene misannotations and quantifies support for whether the genes should be merged into a single gene model. We demonstrate the utility of our method using gene annotations of three reference genomes from maize (B73, PH207, and W22), a difficult system from an annotation perspective due to the size and complexity of the genome. On average, we find several hundred of these potential split-gene misannotations in each pairwise comparison, corresponding to 3-5% of gene models across annotations. To determine which state (i.e. one gene or multiple genes) is biologically supported, we utilize RNAseq data from 10 tissues throughout development along with a novel metric and simulation framework. The methods we have developed require minimal human interaction and can be applied to future assemblies to aid in annotation efforts.ConclusionsSplit-gene misannotations occur at appreciable frequency in maize annotations. We have developed a method to easily identify and correct these misannotations. Importantly, this method is generic in that it can utilize any type of short-read expression data. Failure to account for split-gene misannotations has serious consequences for biological inference, particularly for expression-based analyses.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Cheng He ◽  
Guifang Lin ◽  
Hairong Wei ◽  
Haibao Tang ◽  
Frank F White ◽  
...  

Abstract Genome sequences provide genomic maps with a single-base resolution for exploring genetic contents. Sequencing technologies, particularly long reads, have revolutionized genome assemblies for producing highly continuous genome sequences. However, current long-read sequencing technologies generate inaccurate reads that contain many errors. Some errors are retained in assembled sequences, which are typically not completely corrected by using either long reads or more accurate short reads. The issue commonly exists, but few tools are dedicated for computing error rates or determining error locations. In this study, we developed a novel approach, referred to as k-mer abundance difference (KAD), to compare the inferred copy number of each k-mer indicated by short reads and the observed copy number in the assembly. Simple KAD metrics enable to classify k-mers into categories that reflect the quality of the assembly. Specifically, the KAD method can be used to identify base errors and estimate the overall error rate. In addition, sequence insertion and deletion as well as sequence redundancy can also be detected. Collectively, KAD is valuable for quality evaluation of genome assemblies and, potentially, provides a diagnostic tool to aid in precise error correction. KAD software has been developed to facilitate public uses.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Shang-Qian Xie ◽  
Yue Han ◽  
Xiao-Zhou Chen ◽  
Tai-Yu Cao ◽  
Kai-Kai Ji ◽  
...  

The accurate landscape of transcript isoforms plays an important role in the understanding of gene function and gene regulation. However, building complete transcripts is very challenging for short reads generated using next-generation sequencing. Fortunately, isoform sequencing (Iso-Seq) using single-molecule sequencing technologies, such as PacBio SMRT, provides long reads spanning entire transcript isoforms which do not require assembly. Therefore, we have developed ISOdb, a comprehensive resource database for hosting and carrying out an in-depth analysis of Iso-Seq datasets and visualising the full-length transcript isoforms. The current version of ISOdb has collected 93 publicly available Iso-Seq samples from eight species and presents the samples in two levels: (1) sample level, including metainformation, long read distribution, isoform numbers, and alternative splicing (AS) events of each sample; (2) gene level, including the total isoforms, novel isoform number, novel AS number, and isoform visualisation of each gene. In addition, ISOdb provides a user interface in the website for uploading sample information to facilitate the collection and analysis of researchers’ datasets. Currently, ISOdb is the first repository that offers comprehensive resources and convenient public access for hosting, analysing, and visualising Iso-Seq data, which is freely available.


Nature ◽  
2021 ◽  
Vol 592 (7856) ◽  
pp. 737-746 ◽  
Author(s):  
Arang Rhie ◽  
Shane A. McCarthy ◽  
Olivier Fedrigo ◽  
Joana Damas ◽  
Giulio Formenti ◽  
...  

AbstractHigh-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.


2020 ◽  
Author(s):  
Dandan Lang ◽  
Shilai Zhang ◽  
Pingping Ren ◽  
Fan Liang ◽  
Zongyi Sun ◽  
...  

AbstractThe availability of reference genomes has revolutionized the study of biology. Multiple competing technologies have been developed to improve the quality and robustness of genome assemblies during the last decade. The two widely-used long read sequencing providers – Pacbio (PB) and Oxford Nanopore Technologies (ONT) – have recently updated their platforms: PB enable high throughput HiFi reads with base-level resolution with >99% and ONT generated reads as long as 2 Mb. We applied the two up-to-date platforms to one single rice individual, and then compared the two assemblies to investigate the advantages and limitations of each. The results showed that ONT ultralong reads delivered higher contiguity producing a total of 18 contigs of which 10 were assembled into a single chromosome compared to that of 394 contigs and three chromosome-level contigs for the PB assembly. The ONT ultralong reads also prevented assembly errors caused by long repetitive regions for which we observed a total 44 genes of false redundancies and 10 genes of false losses in the PB assembly leading to over/under-estimations of the gene families in those long repetitive regions. We also noted that the PB HiFi reads generated assemblies with considerably less errors at the level of single nucleotide and small InDels than that of the ONT assembly which generated an average 1.06 errors per Kb assembly and finally engendered 1,475 incorrect gene annotations via altered or truncated protein predictions.


Sign in / Sign up

Export Citation Format

Share Document