scholarly journals Enhanced in vivo-imaging in fish by optimized anaesthesia, fluorescent protein selection and removal of pigmentation

2018 ◽  
Author(s):  
Colin Q. Lischik ◽  
Leonie Adelmann ◽  
Joachim Wittbrodt

AbstractFish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation.We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.

2018 ◽  
Vol 20 (11) ◽  
pp. 1475-1484 ◽  
Author(s):  
Linda Pudelko ◽  
Steven Edwards ◽  
Mirela Balan ◽  
Daniel Nyqvist ◽  
Jonathan Al-Saadi ◽  
...  

Abstract Background Glioblastoma (GBM) is an aggressive form of brain cancer with poor prognosis. Although murine animal models have given valuable insights into the GBM disease biology, they cannot be used in high-throughput screens to identify and profile novel therapies. The only vertebrate model suitable for large-scale screens, the zebrafish, has proven to faithfully recapitulate biology and pathology of human malignancies, and clinically relevant orthotopic zebrafish models have been developed. However, currently available GBM orthotopic zebrafish models do not support high-throughput drug discovery screens. Methods We transplanted both GBM cell lines as well as patient-derived material into zebrafish blastulas. We followed the behavior of the transplants with time-lapse microscopy and real-time in vivo light-sheet microscopy. Results We found that GBM material transplanted into zebrafish blastomeres robustly migrated into the developing nervous system, establishing an orthotopic intracranial tumor already 24 hours after transplantation. Detailed analysis revealed that our model faithfully recapitulates the human disease. Conclusion We have developed a robust, fast, and automatable transplantation assay to establish orthotopic GBM tumors in zebrafish. In contrast to currently available orthotopic zebrafish models, our approach does not require technically challenging intracranial transplantation of single embryos. Our improved zebrafish model enables transplantation of thousands of embryos per hour, thus providing an orthotopic vertebrate GBM model for direct application in drug discovery screens.


2021 ◽  
Author(s):  
Manish Kumar ◽  
Sandeep Kishore ◽  
David McLean ◽  
Yevgenia Kozorovitskiy

We present an open access scanned oblique plane microscopy platform Crossbill. It combines a new optical configuration, open hardware assembly, a systematic alignment protocol, and dedicated control software to provide a compact, versatile, high resolution single objective light-sheet microscopy platform. The demonstrated configuration yields the most affordable sub-micron resolution oblique plane microscopy system to date. We add galvanometer enabled tilt-invariant lateral scan for multi-plane, multi-Hz volumetric imaging capability. A precision translation stage extends stitched field of view to centimeter scale. The accompanying open software is optimized for Crossbill and can be easily extended to include alternative configurations. Using Crossbill, we demonstrate large volume structural fluorescence imaging with sub-micron lateral resolution in zebrafish and mouse brain sections. Crossbill is also capable of multiplane functional imaging, and time-lapse imaging. We suggest multiple alternative configurations to extend Crossbill to diverse microscopy applications.


2017 ◽  
Author(s):  
Prameet Kaur ◽  
Timothy E. Saunders ◽  
Nicholas S. Tolwinski

AbstractOptogenetics allows precise, fast and reversible intervention in biological processes. Light-sheet microscopy allows observation of the full course of embryonic development from egg to larva. Bringing the two approaches together allows unparalleled precision into the temporal regulation of signaling pathways and cellular processes in vivo. To develop this method, we investigated the regulation of canonical Wnt signaling during anterior-posterior patterning of the Drosophila embryonic epidermis. Cryptochrome 2 (CRY2) from Arabidopsis Thaliana was fused to mCherry fluorescent protein and Drosophila β–catenin to form an easy to visualize optogenetic switch. Blue light illumination caused oligomerization of the fusion protein and inhibited downstream Wnt signaling in vitro and in vivo. Temporal inactivation of β–catenin confirmed that Wnt signaling is required not only for Drosophila pattern formation, but also for maintenance later in development. We anticipate that this method will be easily extendable to other developmental signaling pathways and many other experimental systems.


Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


2004 ◽  
Vol 15 (10) ◽  
pp. 4622-4632 ◽  
Author(s):  
Yasmina Bauer ◽  
Philipp Knechtle ◽  
Jürgen Wendland ◽  
Hanspeter Helfer ◽  
Peter Philippsen

Characteristic features of morphogenesis in filamentous fungi are sustained polar growth at tips of hyphae and frequent initiation of novel growth sites (branches) along the extending hyphae. We have begun to study regulation of this process on the molecular level by using the model fungus Ashbya gossypii. We found that the A. gossypii Ras-like GTPase Rsr1p/Bud1p localizes to the tip region and that it is involved in apical polarization of the actin cytoskeleton, a determinant of growth direction. In the absence of RSR1/BUD1, hyphal growth was severely slowed down due to frequent phases of pausing of growth at the hyphal tip. During pausing events a hyphal tip marker, encoded by the polarisome component AgSPA2, disappeared from the tip as was shown by in vivo time-lapse fluorescence microscopy of green fluorescent protein-labeled AgSpa2p. Reoccurrence of AgSpa2p was required for the resumption of hyphal growth. In the Agrsr1/bud1Δ deletion mutant, resumption of growth occurred at the hyphal tip in a frequently uncoordinated manner to the previous axis of polarity. Additionally, hyphal filaments in the mutant developed aberrant branching sites by mislocalizing AgSpa2p thus distorting hyphal morphology. These results define AgRsr1p/Bud1p as a key regulator of hyphal growth guidance.


2007 ◽  
Vol 189 (20) ◽  
pp. 7442-7449 ◽  
Author(s):  
Benjamin M. Hasselbring ◽  
Duncan C. Krause

ABSTRACT Mycoplasma pneumoniae is a major cause of bronchitis and atypical pneumonia in humans. This cell wall-less bacterium has a complex terminal organelle that functions in cytadherence and gliding motility. The gliding mechanism is unknown but is coordinated with terminal-organelle development during cell division. Disruption of M. pneumoniae open reading frame MPN311 results in loss of protein P41 and downstream gene product P24. P41 localizes to the base of the terminal organelle and is required to anchor the terminal organelle to the cell body, but during cell division, MPN311 insertion mutants also fail to properly regulate nascent terminal-organelle development spatially or gliding activity temporally. We measured gliding velocity and frequency and used fluorescent protein fusions and time-lapse imaging to assess the roles of P41 and P24 individually in terminal-organelle development and gliding function. P41 was necessary for normal gliding velocity and proper spatial positioning of new terminal organelles, while P24 was required for gliding frequency and new terminal-organelle formation at wild-type rates. However, P41 was essential for P24 function, and in the absence of P41, P24 exhibited a dynamic localization pattern. Finally, protein P28 requires P41 for stability, but analysis of a P28− mutant established that the MPN311 mutant phenotype was not a function of loss of P28.


2000 ◽  
Vol 113 (18) ◽  
pp. 3151-3159 ◽  
Author(s):  
R. Blum ◽  
D.J. Stephens ◽  
I. Schulz

The mechanism by which soluble proteins without sorting motifs are transported to the cell surface is not clear. Here we show that soluble green fluorescent protein (GFP) targeted to the lumen of the endoplasmic reticulum but lacking any known retrieval, retention or targeting motifs, was accumulated in the lumen of the ERGIC if cells were kept at reduced temperature. Upon activation of anterograde transport by rewarming of cells, lumenal GFP stained a microtubule-dependent, pre-Golgi tubulo-vesicular network that served as transport structure between peripheral ERGIC-elements and the perinuclear Golgi complex. Individual examples of these tubular elements up to 20 microm in length were observed. Time lapse imaging indicated rapid anterograde flow of soluble lumenal GFP through this network. Transport tubules, stained by lumenal GFP, segregated rapidly from COPI-positive membranes after transport activation. A transmembrane cargo marker, the temperature sensitive glycoprotein of the vesicular stomatitis virus, ts-045 G, is also not present in tubules which contained the soluble cargo marker lum-GFP. These results suggest a role for pre-Golgi vesicular tubular membranes in long distance anterograde transport of soluble cargo. http://www.biologists.com/JCS/movies/jcs1334.html


2001 ◽  
Vol 152 (2) ◽  
pp. 385-400 ◽  
Author(s):  
Patrick Heun ◽  
Thierry Laroche ◽  
M.K. Raghuraman ◽  
Susan M. Gasser

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)–tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lillian K Fritz-Laylin ◽  
Megan Riel-Mehan ◽  
Bi-Chang Chen ◽  
Samuel J Lord ◽  
Thomas D Goddard ◽  
...  

Leukocytes and other amoeboid cells change shape as they move, forming highly dynamic, actin-filled pseudopods. Although we understand much about the architecture and dynamics of thin lamellipodia made by slow-moving cells on flat surfaces, conventional light microscopy lacks the spatial and temporal resolution required to track complex pseudopods of cells moving in three dimensions. We therefore employed lattice light sheet microscopy to perform three-dimensional, time-lapse imaging of neutrophil-like HL-60 cells crawling through collagen matrices. To analyze three-dimensional pseudopods we: (i) developed fluorescent probe combinations that distinguish cortical actin from dynamic, pseudopod-forming actin networks, and (ii) adapted molecular visualization tools from structural biology to render and analyze complex cell surfaces. Surprisingly, three-dimensional pseudopods turn out to be composed of thin (<0.75 µm), flat sheets that sometimes interleave to form rosettes. Their laminar nature is not templated by an external surface, but likely reflects a linear arrangement of regulatory molecules. Although we find that Arp2/3-dependent pseudopods are dispensable for three-dimensional locomotion, their elimination dramatically decreases the frequency of cell turning, and pseudopod dynamics increase when cells change direction, highlighting the important role pseudopods play in pathfinding.


2021 ◽  
Author(s):  
Kelly Kersten ◽  
Kenneth H Hu ◽  
Alexis J Combes ◽  
Bushra Samad ◽  
Tory Harwin ◽  
...  

T cell exhaustion is a major impediment to anti-tumor immunity. However, it remains elusive how other immune cells in the tumor microenvironment (TME) contribute to this dysfunctional state. Here we show that the biology of tumor-associated macrophages (TAM) and exhausted T cells (Tex) in the TME is extensively linked. We demonstrate that in vivo depletion of TAM reduces exhaustion programs in tumor-infiltrating CD8+ T cells and reinvigorates their effector potential. Reciprocally, transcriptional and epigenetic profiling reveals that Tex express factors that actively recruit monocytes to the TME and shape their differentiation. Using lattice light sheet microscopy, we show that TAM and CD8+ T cells engage in unique long-lasting antigen-specific synaptic interactions that fail to activate T cells, but prime them for exhaustion, which is then accelerated in hypoxic conditions. Spatially resolved sequencing supports a spatiotemporal self-enforcing positive feedback circuit that is aligned to protect rather than destroy a tumor.


Sign in / Sign up

Export Citation Format

Share Document