scholarly journals Population-scale proteome variation in human induced pluripotent stem cells

2018 ◽  
Author(s):  
Bogdan A Mirauta ◽  
Daniel D Seaton ◽  
Dalila Bensaddek ◽  
Alejandro Brenes ◽  
Marc J Bonder ◽  
...  

AbstractRealising the potential of human induced pluripotent stem cell (iPSC) technology for drug discovery, disease modelling and cell therapy requires an understanding of variability across iPSC lines. While previous studies have characterized iPS cell lines genetically and transcriptionally, little is known about the variability of the iPSC proteome. Here, we present the first comprehensive proteomic iPSC dataset, analysing 202 iPSC lines derived from 151 donors. We characterise the major genetic determinants affecting proteome and transcriptome variation across iPSC lines and identify key regulatory mechanisms affecting variation in protein abundance. Our data identified >700 human iPSC protein quantitative trait loci (pQTLs). We mapped trans regulatory effects, identifying an important role for protein-protein interactions. We discovered that pQTLs show increased enrichment in disease-linked GWAS variants, compared with RNA-based eQTLs.

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Henry Joutsijoki ◽  
Markus Haponen ◽  
Jyrki Rasku ◽  
Katriina Aalto-Setälä ◽  
Martti Juhola

The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient’s cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using ak-NN classifier showing improved accuracy compared to earlier studies.


2017 ◽  
Vol 312 (6) ◽  
pp. H1144-H1153 ◽  
Author(s):  
Sam Chai ◽  
Xiaoping Wan ◽  
Drew M. Nassal ◽  
Haiyan Liu ◽  
Christine S. Moravec ◽  
...  

Two-pore K+ (K2p) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K2p channels in the heart. Comparing quantitative PCR expression of K2p channels between human heart tissue and iPSC-CMs revealed K2p1.1, K2p2.1, K2p5.1, and K2p17.1 to be higher expressed in cHVT, whereas K2p3.1 and K2p13.1 were higher in iPSC-CMs. Notably, K2p17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K2p2.1, K2p3.1, K2p6.1, and K2p17.1. Here, we report the expression level of 10 human K2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K2p17.1 as significantly reduced in niHF tissues and K2p4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K+ (K2p) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K2p channels.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jacob B. Ruden ◽  
Mrinalini Dixit ◽  
José C. Zepeda ◽  
Brad A. Grueter ◽  
Laura L. Dugan

N-methyl-D-aspartate (NMDA) receptors are critical for higher-order nervous system function, but in previously published protocols to convert human induced pluripotent stem cells (iPSCs) to mature neurons, functional NMDA receptors (NMDARs) are often either not reported or take an extended time to develop. Here, we describe a protocol to convert human iPSC-derived neural progenitor cells (NPCs) to mature neurons in only 37 days. We demonstrate that the mature neurons express functional NMDARs exhibiting ligand-activated calcium flux, and we document the presence of NMDAR-mediated electrically evoked postsynaptic current. In addition to being more rapid than previous procedures, our protocol is straightforward, does not produce organoids which are difficult to image, and does not involve co-culture with rodent astrocytes. This could enhance our ability to study primate/human-specific aspects of NMDAR function and signaling in health and disease.


2021 ◽  
Author(s):  
Qiyan Mao ◽  
Achyuth Acharya ◽  
Alejandra Rodriguez-delaRosa ◽  
Fabio Marchiano ◽  
Benoit Dehapiot ◽  
...  

Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. By directly probing tension we found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse followed by a disassembly of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.


2020 ◽  
Vol 319 (5) ◽  
pp. H1112-H1122 ◽  
Author(s):  
Weizhen Li ◽  
Julie L. Han ◽  
Emilia Entcheva

We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.


2019 ◽  
Vol 20 (18) ◽  
pp. 4381 ◽  
Author(s):  
Andreas Brodehl ◽  
Hans Ebbinghaus ◽  
Marcus-André Deutsch ◽  
Jan Gummert ◽  
Anna Gärtner ◽  
...  

In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Keitaro Domae ◽  
Shigeru Miyagawa ◽  
Satsuki Fukushima ◽  
Atsuhiro Saito ◽  
Yukiko Imanishi ◽  
...  

Introduction: It has been shown that transplanted induced pluripotent stem cell (iPSC)-derived cardiac cells in the myocardial infarction (MI) heart synchronously contract with native myocardium to mechanically contribute to functional recovery in rodent models. We herein hypothesized that large scale cardiac cell-sheets generated by human iPSCs may induce a greater functional recovery than small scale ones after transplantation in chronic MI heart. Methods: Bioreactor-based three-dimensional suspension culture system was used for generating large scale-expanded human iPSC-derived cardiomyocytes, of which cardiac troponin T positivity was constantly 75-85%. Scaffold-free cell-sheets containing several cell number (1.0х10^6, 10^7, 10^8) were transplanted over the cardiac surface in porcine chronic MI heart (n=5 each). Tacrolimus and prednisolone were daily given in all pigs against xeno-transplantation-inducing immune reaction. Results: Echocardiographically, left ventricular systolic and diastolic dimensions were significantly decreasing and ejection fraction was significantly increasing in the 10^8 cell group. In addition, global myocardial structure was better preserved in the 10^8 cell group with presence of the graft in the infarct area macroscopically (Figure). Moreover, there were significantly less accumulation of interstitial fibrosis in the infarct-remote area and greater vascular density and expression of VEGF, bFGF, and SDF-1 in the infarct-border area in the 10^8 cell group than the other groups at 3 months after the transplantation. Conclusions: Large scale human iPSC-derived cardiac cells were engrafted in the infarct myocardium, showing substantial functional recovery in a porcine chronic MI heart, indicating that artificial cell-based myocardial replacement therapy may be achieved. In contrast, small scale cardiac cells induced modest functional recovery, suggesting paracrine mechanisms of this treatment.


2019 ◽  
Vol 20 (16) ◽  
pp. 3862 ◽  
Author(s):  
Mika Suga ◽  
Takayuki Kondo ◽  
Haruhisa Inoue

Astrocytes play vital roles in neurological disorders. The use of human induced pluripotent stem cell (iPSC)-derived astrocytes provides a chance to explore the contributions of astrocytes in human diseases. Here we review human iPSC-based models for neurological disorders associated with human astrocytes and discuss the points of each model.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Yoshitaka Kase ◽  
Hideyuki Okano

Abstract It has been reported that coronavirus disease 2019 (COVID-19) causes not only pneumonia but also systemic inflammations including central nervous system (CNS) disorders. However, little is known about the mechanism that triggers the COVID-19-associated CNS disorders, due to the lack of appropriate experimental systems. Our present study showed that angiotensin-converting enzyme-2 (ACE2), a cellular receptor for SARS-CoV-2, is expressed in human induced pluripotent stem cell (iPSC)-derived neural stem/progenitor cells (hiPSC-NS/PCs) and young neurons. Furthermore, together with database analysis, we found that a viral virulent factor CCN family member 1 (CCN1), which is known to be induced by SARS-CoV-2 infection, is expressed in these cells at basal levels. Considering the role of CCN1 which is known to be involved in viral toxicity and inflammation, hiPSC-NS/PCs could provide an excellent model for COVID-19-associated CNS disorders from the aspect of SARS-CoV-2 infection-ACE2-CCN1 axis. In addition, we identified compounds that reduce CCN1 expression. Collectively, our study using hiPSC-NS/PCs may aid in the development of a therapeutic target for COVID-19-related CNS disorders.


Sign in / Sign up

Export Citation Format

Share Document