scholarly journals Tension-driven multi-scale self-organisation in human iPSC-derived muscle fibers

2021 ◽  
Author(s):  
Qiyan Mao ◽  
Achyuth Acharya ◽  
Alejandra Rodriguez-delaRosa ◽  
Fabio Marchiano ◽  
Benoit Dehapiot ◽  
...  

Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. By directly probing tension we found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse followed by a disassembly of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.

2021 ◽  
Author(s):  
Sophie Girardin ◽  
Blandine Clément ◽  
Stephan J. Ihle ◽  
Sean Weaver ◽  
Jana B. Petr ◽  
...  

Bottom-up neuroscience, which consists of building and studying controlled networks of neurons in vitro, is a promising method to investigate information processing at the neuronal level. However, in vitro studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with mostly unidirectional connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs). Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.


2020 ◽  
Vol 11 ◽  
Author(s):  
Anne Hedegaard ◽  
Szymon Stodolak ◽  
William S. James ◽  
Sally A. Cowley

Human induced Pluripotent Stem Cell (hiPSC) models are a valuable new tool for research into neurodegenerative diseases. Neuroinflammation is now recognized as a key process in neurodegenerative disease and aging, and microglia are central players in this. A plethora of hiPSC-derived microglial models have been published recently to explore neuroinflammation, ranging from monoculture through to xenotransplantation. However, combining physiological relevance, reproducibility, and scalability into one model is still a challenge. We examine key features of the in vitro microglial environment, especially media composition, extracellular matrix, and co-culture, to identify areas for improvement in current hiPSC-microglia models.


2019 ◽  
Author(s):  
Lilianne Barbar ◽  
Tanya Jain ◽  
Matthew Zimmer ◽  
Ilya Kruglikov ◽  
Suzanne R. Burstein ◽  
...  

ABSTRACTAstrocytes play a central role in the central nervous system (CNS), maintaining brain homeostasis, providing metabolic support to neurons, regulating connectivity of neural circuits, and controlling blood flow as an integral part of the blood-brain barrier. They have been increasingly implicated in the mechanisms of neurodegenerative diseases, prompting a greater need for methods that enable their study. The advent of human induced pluripotent stem cell (iPSC) technology has made it possible to generate patient-specific astrocytes and CNS cells using protocols developed by our team and others as valuable disease models. Yet isolating astrocytes from primary specimens or from in vitro mixed cultures for downstream analyses has remained challenging. To address this need, we performed a screen for surface markers that allow FACS sorting of astrocytes. Here we demonstrate that CD49f is an effective marker for sorting functional human astrocytes. We sorted CD49f+ cells from a protocol we previously developed that generates a complex culture of oligodendrocytes, neurons and astrocytes from iPSCs. CD49f+-purified cells express all canonical astrocyte markers and perform characteristic functions, such as neuronal support and glutamate uptake. Of particular relevance to neurodegenerative diseases, CD49f+ astrocytes can be stimulated to take on an A1 neurotoxic phenotype, in which they secrete pro-inflammatory cytokines and show an impaired ability to support neuronal maturation. This study establishes a novel marker for isolating functional astrocytes from complex CNS cell populations, strengthening the use of iPSC-astrocytes for the study of their regulation and dysregulation in neurodegenerative diseases.


2017 ◽  
Vol 37 (11) ◽  
pp. 2014-2025 ◽  
Author(s):  
Yang Lin ◽  
Chang-Hyun Gil ◽  
Mervin C. Yoder

The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony–forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.


Author(s):  
Arun Sharma ◽  
Gustavo Garcia ◽  
Vaithilingaraja Arumugaswami ◽  
Clive N. Svendsen

SUMMARYCoronavirus disease 2019 (COVID-19) is a viral pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is predominantly defined by respiratory symptoms, but cardiac complications including arrhythmias, heart failure, and viral myocarditis are also prevalent. Although the systemic ischemic and inflammatory responses caused by COVID-19 can detrimentally affect cardiac function, the direct impact of SARS-CoV-2 infection on human cardiomyocytes is not well-understood. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model system to examine the mechanisms of cardiomyocyte-specific infection by SARS-CoV-2. Microscopy and immunofluorescence demonstrated that SARS-CoV-2 can enter and replicate within hiPSC-CMs, localizing at perinuclear locations within the cytoplasm. Viral cytopathic effect induced hiPSC-CM apoptosis and cessation of beating after 72 hours of infection. These studies show that SARS-CoV-2 can infect hiPSC-CMs in vitro, establishing a model for elucidating the mechanisms of infection and potentially a cardiac-specific antiviral drug screening platform.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Naresh Kumar ◽  
Julie A. Dougherty ◽  
Heather R. Manring ◽  
Ibrahim Elmadbouh ◽  
Muhamad Mergaye ◽  
...  

Abstract Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


Sign in / Sign up

Export Citation Format

Share Document