scholarly journals Multiple mechanisms link prestimulus neural oscillations to sensory responses

2018 ◽  
Author(s):  
Luca Iemi ◽  
Niko A Busch ◽  
Annamaria Laudini ◽  
Saskia Haegens ◽  
Jason Samaha ◽  
...  

AbstractSpontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Luca Iemi ◽  
Niko A Busch ◽  
Annamaria Laudini ◽  
Saskia Haegens ◽  
Jason Samaha ◽  
...  

Spontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.


2019 ◽  
Author(s):  
Zachary W. Davis ◽  
Lyle Muller ◽  
Julio-Martinez Trujillo ◽  
Terrence Sejnowski ◽  
John H. Reynolds

AbstractPerceptual sensitivity varies from moment to moment. One potential source of variability is spontaneous fluctuations in cortical activity that can travel as a wave. Spontaneous traveling waves have been reported during anesthesia, but questioned as to whether they are relevant to waking cortical function. Using newly developed analytic techniques, we find spontaneous waves of activity in extrastriate visual cortex of awake marmosets (Callithrix jacchus). In monkeys trained to detect faint visual targets, the timing and position of spontaneous traveling waves, prior to target onset, predict the magnitude of evoked activity and the likelihood of detection. In contrast, spatially disorganized fluctuations of neural activity are much less predictive. These results reveal an important role for spontaneous traveling waves in sensory processing through modulating neural and perceptual sensitivity.One Sentence SummaryFluctuations in cortical activity often travel as waves, shape incoming sensory information, and affect conscious perception.


Author(s):  
Luca Iemi ◽  
Laura Gwilliams ◽  
Jason Samaha ◽  
Ryszard Auksztulewicz ◽  
Yael M Cycowicz ◽  
...  

AbstractThe ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Spontaneous fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on invasive electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


2021 ◽  
Author(s):  
Ignacio Saez ◽  
Jack Lin ◽  
Edward Chang ◽  
Josef Parvizi ◽  
Robert T. Knight ◽  
...  

AbstractHuman neuroimaging and animal studies have linked neural activity in orbitofrontal cortex (OFC) to valuation of positive and negative outcomes. Additional evidence shows that neural oscillations, representing the coordinated activity of neuronal ensembles, support information processing in both animal and human prefrontal regions. However, the role of OFC neural oscillations in reward-processing in humans remains unknown, partly due to the difficulty of recording oscillatory neural activity from deep brain regions. Here, we examined the role of OFC neural oscillations (<30Hz) in reward processing by combining intracranial OFC recordings with a gambling task in which patients made economic decisions under uncertainty. Our results show that power in different oscillatory bands are associated with distinct components of reward evaluation. Specifically, we observed a double dissociation, with a selective theta band oscillation increase in response to monetary gains and a beta band increase in response to losses. These effects were interleaved across OFC in overlapping networks and were accompanied by increases in oscillatory coherence between OFC electrode sites in theta and beta band during gain and loss processing, respectively. These results provide evidence that gain and loss processing in human OFC are supported by distinct low-frequency oscillations in networks, and provide evidence that participating neuronal ensembles are organized functionally through oscillatory coherence, rather than local anatomical segregation.


2021 ◽  
Vol 20 (3) ◽  
pp. 185-201
Author(s):  
Ana Roknić ◽  
Sanja Vuković

Introduction. Sensory processing is a neurobiological process in which a person uses their senses, sends information to an appropriate reception and processing center, and responds to environmental stimulations. Previous research has shown that sensory processing difficulties are more common among people with autism spectrum disorder than among people of the typical population. Objectives. The aim of this paper was to determine the patterns of sensory processing in subjects of the typical population and subjects with autism spectrum disorder, as well as gender and age differences in sensory profiles in these groups of subjects. Methods. Using The Child Sensory Profile 2 as the measuring instrument, the characteristics of sensory processing were examined in 120 subjects of both genders, 60 subjects with autism spectrum disorder and 60 subjects of typical development, ages three to 13 years and 11 months. Results. The obtained results show that there are differences between the two groups of respondents and that these differences occur in all nine subscales of the instrument. It was found that subjects with autismspectrumdisorder hadmore difficulty in processing sensory information compared to subjects of the typical population, especially in the domain of tactile perception. The results also show that the quality of sensory information processing in both groups of respondents improved with age. In relation to the respondents' gender, the obtained differences were significant in the domain of the total score of the instrument, in favor of the boys, but this was not observed in the measurements on all subscales. Conclusion. In accordance with the above findings, when creating an individual educational plan, it is necessary to take into account all the specifics of sensory processing of children with autism spectrum disorder.


2019 ◽  
Author(s):  
Robert G. Law ◽  
Sarah Pugliese ◽  
Hyeyoung Shin ◽  
Danielle Sliva ◽  
Shane Lee ◽  
...  

AbstractTransient neocortical events with high spectral power in the 15–29Hz beta band are among the most reliable predictors of sensory perception: High prestimulus beta event rates in primary somatosensory lead to sensory suppression, most effective at 100–300ms prestimulus latency. However, the synaptic and neuronal mechanisms inducing beta’s perceptual effects have not been completely localized. We combined human MEG with neural modeling designed to account for these macroscale signals to interpret the cellular and circuit mechanisms that underlie the influence of beta on tactile detection. Extending prior studies, we modeled the hypothesis that higher-order thalamic bursts, sufficient for beta event generation in cortex, recruit supragranular GABAB inhibition acting on a 300ms time scale to suppress sensory information. Consistency between model and MEG data supported this hypothesis and led to a further prediction, validated in our data, that stimuli are perceived when beta events occur simultaneously with tactile stimulation. The post-event suppressive mechanism explains an array of studies that associate beta with decreased processing, while the during-event mechanism may demand a reinterpretation of the role of beta events in the context of coincident timing.Significance statementSomatosensory beta events – transient 15-29Hz oscillations in electromagnetic recordings – are thought to be generated when “top-down” bursts of spikes presumably originating in higher-order thalamus arrive in upper layers of somatosensory cortex. Physiological evidence had shown that the immediate action of these top-down projections should be excitatory; however, after a beta event, sensory perception is noticeably inhibited for approximately 300ms. The source of this post-event sensory suppression, in particular, had been unresolved. Using a detailed computational model of somatosensory cortex, we find evidence for the hypothesis that these bursts couple indirectly to GABAB inhibition in upper layers of cortex, and that beta events first briefly disinhibit sensory relay before a longer period of inhibition.


Cephalalgia ◽  
2020 ◽  
Vol 40 (9) ◽  
pp. 913-923 ◽  
Author(s):  
Matthijs JL Perenboom ◽  
Mark van de Ruit ◽  
Ronald Zielman ◽  
Arn MJM van den Maagdenberg ◽  
Michel D Ferrari ◽  
...  

Background Migraine is associated with altered sensory processing and cortical responsivity that may contribute to susceptibility to attacks by changing brain network excitability dynamics. To gain better insight into cortical responsivity changes in migraine we subjected patients to a short series of light inputs over a broad frequency range (“chirp” stimulation), designed to uncover dynamic features of visual cortex responsivity. Methods EEG responses to visual chirp stimulation (10–40 Hz) were measured in controls (n = 24) and patients with migraine with aura (n = 19) or migraine without aura (n = 20). Average EEG responses were assessed at (i) all EEG frequencies between 5 and 125 Hz, (ii) stimulation frequencies, and (iii) harmonic frequencies. We compared average responses in a low (10–18 Hz), medium (19–26 Hz) and high (27–40 Hz) frequency band. Results Responses to chirp stimulation were similar in controls and migraine subtypes. Eight measurements (n = 3 migraine with aura; n = 5 without aura) were assigned as “pre-ictal”, based on reported headache within 48 hours after investigation. Pre-ictally, an increased harmonic response to 22–32 Hz stimulation (beta band) was observed ( p = 0.001), compared to interictal state measurements. Conclusions We found chirp responses to be enhanced in the 48 hours prior to migraine headache onset. Visual chirp stimulation proved a simple and reliable technique with potential to detect changes in cortical responsivity associated with the onset of migraine attacks.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simon Ladouce ◽  
David I. Donaldson ◽  
Paul A. Dudchenko ◽  
Magdalena Ietswaart

Abstract The distribution of attention between competing processing demands can have dramatic real-world consequences, however little is known about how limited attentional resources are distributed during real-world behaviour. Here we employ mobile EEG to characterise the allocation of attention across multiple sensory-cognitive processing demands during naturalistic movement. We used a neural marker of attention, the Event-Related Potential (ERP) P300 effect, to show that attention to targets is reduced when human participants walk compared to when they stand still. In a second experiment, we show that this reduction in attention is not caused by the act of walking per se. A third experiment identified the independent processing demands driving reduced attention to target stimuli during motion. ERP data reveals that the reduction in attention seen during walking reflects the linear and additive sum of the processing demands produced by visual and inertial stimulation. The mobile cognition approach used here shows how limited resources are precisely re-allocated according to the sensory processing demands that occur during real-world behaviour.


Sign in / Sign up

Export Citation Format

Share Document