scholarly journals Rickettsia Sca2 Recruits Two Actin Subunits for Nucleation but Lacks WH2 Domains

2018 ◽  
Author(s):  
SS Alqassim ◽  
IG Lee ◽  
R Dominguez

AbstractThe Rickettsia ~1,800 amino acid autotransporter protein Sca2 promotes actin polymerization on the surface of the bacterium to drive its movement using an actin comet tail mechanism. Sca2 mimics eukaryotic formins in that it promotes both actin filament nucleation and elongation and competes with capping protein to generate filaments that are long and unbranched. However, despite these functional similarities, Sca2 is structurally unrelated to eukaryotic formins and achieves these functions through an entirely different mechanism. Thus, while formins are dimeric, Sca2 functions as a monomer. However, Sca2 displays intramolecular interactions and functional cooperativity between its N- and C-terminal domains that are crucial for actin nucleation and elongation. Here, we map the interaction of N- and C-terminal fragments of Sca2 and their contributions to actin binding and nucleation. We find that both the N- and C-terminal regions of Sca2 interact with actin monomers, but only weakly, whereas the full-length protein binds two actin monomers with high affinity. Moreover, deletions at both ends of the N- and C-terminal regions disrupt their ability to interact with each other, suggesting that they form a contiguous ring-like structure that wraps around two actin subunits, analogous to the formin homology-2 (FH2) domain. The discovery of Sca2 as an actin nucleator followed the identification of what appeared to be a repeat of three WH2 domains in the middle of the molecule, consistent with the presence of WH2 domains in most actin nucleators. However, we show here that contrary to previous assumptions Sca2 does not contain WH2 domains, and that the corresponding region is folded as a globular domain that cooperates with other parts of the Sca2 molecule for actin binding and nucleation.

2016 ◽  
Vol 27 (16) ◽  
pp. 2565-2575 ◽  
Author(s):  
Thu Ly ◽  
Natalia Moroz ◽  
Christopher T. Pappas ◽  
Stefanie M. Novak ◽  
Dmitri Tolkatchev ◽  
...  

Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2–knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43–90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124–201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly­merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.


2003 ◽  
Vol 14 (1) ◽  
pp. 118-128 ◽  
Author(s):  
Roberta Hopmann ◽  
Kathryn G. Miller

Profilin is a well-characterized protein known to be important for regulating actin filament assembly. Relatively few studies have addressed how profilin interacts with other actin-binding proteins in vivo to regulate assembly of complex actin structures. To investigate the function of profilin in the context of a differentiating cell, we have studied an instructive genetic interaction between mutations in profilin (chickadee) and capping protein (cpb). Capping protein is the principal protein in cells that caps actin filament barbed ends. When its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskeleton becomes disorganized, causing abnormal bristle morphology. chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the actin cytoskeleton seen in cpb mutants. Furthermore, overexpression of profilin in the bristle mimics many features of thecpb loss-of-function phenotype. The interaction betweencpb and chickadee suggests that profilin promotes actin assembly in the bristle and that a balance between capping protein and profilin activities is important for the proper regulation of F-actin levels. Furthermore, this balance of activities affects the association of actin structures with the membrane, suggesting a link between actin filament dynamics and localization of actin structures within the cell.


1996 ◽  
Vol 134 (2) ◽  
pp. 389-399 ◽  
Author(s):  
K Barkalow ◽  
W Witke ◽  
D J Kwiatkowski ◽  
J H Hartwig

Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F-actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.


2003 ◽  
Vol 160 (4) ◽  
pp. 565-575 ◽  
Author(s):  
Qiang Wang ◽  
Yi Xie ◽  
Quan-Sheng Du ◽  
Xiao-Jun Wu ◽  
Xu Feng ◽  
...  

Osteoclast activation is important for bone remodeling and is altered in multiple bone disorders. This process requires cell adhesion and extensive actin cytoskeletal reorganization. Proline-rich tyrosine kinase 2 (PYK2), a major cell adhesion–activated tyrosine kinase in osteoclasts, plays an important role in regulating this event. The mechanisms by which PYK2 regulates actin cytoskeletal organization and osteoclastic activation remain largely unknown. In this paper, we provide evidence that PYK2 directly interacts with gelsolin, an actin binding, severing, and capping protein essential for osteoclastic actin cytoskeletal organization. The interaction is mediated via the focal adhesion–targeting domain of PYK2 and an LD motif in gelsolin's COOH terminus. PYK2 phosphorylates gelsolin at tyrosine residues and regulates gelsolin bioactivity, including decreasing gelsolin binding to actin monomer and increasing gelsolin binding to phosphatidylinositol lipids. In addition, PYK2 increases actin polymerization at the fibroblastic cell periphery. Finally, PYK2 interacts with gelsolin in osteoclasts, where PYK2 activation is required for the formation of actin rings. Together, our results suggest that PYK2 is a regulator of gelsolin, revealing a novel PYK2–gelsolin pathway in regulating actin cytoskeletal organization in multiple cells, including osteoclasts.


1984 ◽  
Vol 99 (3) ◽  
pp. 994-1001 ◽  
Author(s):  
H Hosoya ◽  
I Mabuchi

A one-to-one complex of a 45,000-mol-wt protein and actin was purified from unfertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, by means of DNase l-Sepharose affinity and gel filtration column chromatographies. Effects of the complex on the polymerization of actin were studied by viscometry, spectrophotometry, and electron microscopy. The results are summarized as follows: (a) The initial rate of actin polymerization is inhibited at a very low molar ratio of the complex to actin. (b) Acceleration of the initial rate of polymerization occurs at a relatively high, but still substoichiometric, molar ratio of the complex to actin. (c) Annealing of F-actin fragments is inhibited by the complex. (d) The complex prevents actin filaments from depolymerizing. (e) Growth of the actin filament is inhibited at the barbed end. In all cases except b, a molar ratio of less than 1:100 of the 45,000-mol-wt protein-actin complex to actin is sufficient to produce these significant effects. These results indicate that the 45,000-mol-wt protein-actin complex from the sea urchin egg regulates the assembly of actin by binding to the barbed end (preferred end or rapidly growing end) of the actin filament. The 45,000-mol-wt protein-actin complex can thus be categorized as a capping protein.


2003 ◽  
Vol 160 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Raymond S. Maul ◽  
Yuhong Song ◽  
Kurt J. Amann ◽  
Sachi C. Gerbin ◽  
Thomas D. Pollard ◽  
...  

Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundles. EPLIN does not affect the kinetics of spontaneous actin polymerization or elongation at the barbed end, but inhibits branching nucleation of actin filaments by Arp2/3 complex. Side binding activity may stabilize filaments and account for the inhibition of nucleation mediated by Arp2/3 complex. We propose that EPLIN promotes the formation of stable actin filament structures such as stress fibers at the expense of more dynamic actin filament structures such as membrane ruffles. Reduced expression of EPLIN may contribute to the motility of invasive tumor cells.


2017 ◽  
Vol 217 (1) ◽  
pp. 211-230 ◽  
Author(s):  
Maryam Izadi ◽  
Dirk Schlobinski ◽  
Maria Lahr ◽  
Lukas Schwintzer ◽  
Britta Qualmann ◽  
...  

Local actin filament formation powers the development of the signal-receiving arbor of neurons that underlies neuronal network formation. Yet, little is known about the molecules that drive these processes and may functionally connect them to the transient calcium pulses observed in restricted areas in the forming dendritic arbor. Here we demonstrate that Cordon-Bleu (Cobl)–like, an uncharacterized protein suggested to represent a very distantly related, evolutionary ancestor of the actin nucleator Cobl, despite having only a single G-actin–binding Wiskott–Aldrich syndrome protein Homology 2 (WH2) domain, massively promoted the formation of F-actin–rich membrane ruffles of COS-7 cells and of dendritic branches of neurons. Cobl-like hereby integrates WH2 domain functions with those of the F-actin–binding protein Abp1. Cobl-like–mediated dendritic branching is dependent on Abp1 as well as on Ca2+/calmodulin (CaM) signaling and CaM association. Calcium signaling leads to a promotion of complex formation with Cobl-like’s cofactor Abp1. Thus, Ca2+/CaM control of actin dynamics seems to be a much more broadly used principle in cell biology than previously thought.


1991 ◽  
Vol 100 (3) ◽  
pp. 481-489 ◽  
Author(s):  
M. Haugwitz ◽  
A.A. Noegel ◽  
D. Rieger ◽  
F. Lottspeich ◽  
M. Schleicher

Two profilin isoforms (profilins I and II) have been purified from Dictyostelium discoideum, using affinity chromatography on a poly(L-proline) matrix; the isoforms could be separated by cation-exchange chromatography on a FPLC system. The gene coding for profilin I was cloned from a lambda gt11 cDNA library using a profilin I-specific monoclonal antibody. The profilin II cDNA was isolated by probing the cDNA library with an oligonucleotide deduced from the N-terminal amino acid sequence of profilin II, which has an open N terminus in contrast to profilin I. The deduced amino acid sequences of both genes show that profilin I in comparison to profilin II is slightly larger (13,064 Da vs 12,729 Da), has a more acidic isoelectric point (calc. pI 6.62 vs 7.26) and shares with profilin II 68 identical residues out of 126 amino acids. Although both profilins contain a conserved lysine residue in the putative actin-binding region and can be crosslinked covalently to G-actin, the crosslinking efficiency of profilin II to actin is substantially higher than that of profilin I. These data are in agreement with studies on the functional properties of the profilin isoforms. In most preparations profilin II was more efficient in delaying the onset of elongation during the course of actin polymerization and caused a higher critical concentration for actin polymerization than profilin I, probably due to the slightly increased affinity of profilin II for D. discoideum G-actin (approx. Kd 1.8 × 10(−6) M) as compared to that of profilin I (approx. Kd 5.1 × 10(−6) M).(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 15 (10) ◽  
pp. 4735-4748 ◽  
Author(s):  
Marleen Van Troys ◽  
Kanako Ono ◽  
Daisy Dewitte ◽  
Veronique Jonckheere ◽  
Natalie De Ruyck ◽  
...  

Generating specific actin structures via controlled actin polymerization is a prerequisite for eukaryote development and reproduction. We here report on an essential Caenorhabditis elegans protein tetraThymosinβ expressed in developing neurons and crucial during oocyte maturation in adults. TetraThymosinβ has four repeats, each related to the actin monomer-sequestering protein thymosinβ 4 and assists in actin filament elongation. For homologues with similar multirepeat structures, a profilin-like mechanism of ushering actin onto filament barbed ends, based on the formation of a 1:1 complex, is proposed to underlie this activity. We, however, demonstrate that tetraThymosinβ binds multiple actin monomers via different repeats and in addition also interacts with filamentous actin. All repeats need to be functional for attaining full activity in various in vitro assays. The activities on actin are thus a direct consequence of the repeated structure. In containing both G- and F-actin interaction sites, tetraThymosinβ may be reminiscent of nonhomologous multimodular actin regulatory proteins implicated in actin filament dynamics. A mutation that suppresses expression of tetraThymosinβ is homozygous lethal. Mutant organisms develop into adults but display a dumpy phenotype and fail to reproduce as their oocytes lack essential actin structures. This strongly suggests that the activity of tetraThymosinβ is of crucial importance at specific developmental stages requiring actin polymerization.


Author(s):  
Ying Xie ◽  
Feng Zhou ◽  
Qianqian Ma ◽  
Lanyuan Lu ◽  
Yansong Miao

Actin nucleation is achieved by collaborative teamwork of actin nucleator factors (NFs) and nucleation-promoting factors (NPFs) into functional protein complexes. Selective inter- and intramolecular interactions between the nucleation complex constituents enable diverse modes of complex assembly in initiating actin polymerization upon demand. Budding yeast has two formins, Bni1 and Bnr1, which are teamed up with different NPFs. However, the selective pairing between formin NFs and NPFs into the nucleation core for actin polymerization is not completely understood. By examining the functions and interactions of NPFs and NFs via biochemistry, genetics, and mathematical modeling approaches, we found that two NPFs, Aip5 and Bud6, showed joint teamwork effort with Bni1 and Bnr1, respectively, by interacting with the C-terminal intrinsically disordered region (IDR) of formin, in which two NPFs work together to promote formin-mediated actin nucleation. Although the C-terminal IDRs of Bni1 and Bnr1 are distinct in length, each formin IDR orchestrates the recruitment of Bud6 and Aip5 cooperatively by different positioning strategies to form a functional complex. Our study demonstrated the dynamic assembly of the actin nucleation complex by recruiting multiple partners in budding yeast, which may be a general feature for effective actin nucleation by formins. [Media: see text]


Sign in / Sign up

Export Citation Format

Share Document