wh2 domain
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 1)

2019 ◽  
Vol 117 (1) ◽  
pp. 439-447 ◽  
Author(s):  
Mu A ◽  
Tak Shun Fung ◽  
Lisa M. Francomacaro ◽  
Thao Huynh ◽  
Tommi Kotila ◽  
...  

INF2 is a formin protein that accelerates actin polymerization. A common mechanism for formin regulation is autoinhibition, through interaction between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD). We recently showed that INF2 uses a variant of this mechanism that we term “facilitated autoinhibition,” whereby a complex consisting of cyclase-associated protein (CAP) bound to lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, in a manner requiring INF2-DID. Deacetylation of actin in the CAP/KAc-actin complex activates INF2. Here we use lysine-to-glutamine mutations as acetylmimetics to map the relevant lysines on actin for INF2 regulation, focusing on K50, K61, and K328. Biochemically, K50Q- and K61Q-actin, when bound to CAP2, inhibit full-length INF2 but not INF2 lacking DID. When not bound to CAP, these mutant actins polymerize similarly to WT-actin in the presence or absence of INF2, suggesting that the effect of the mutation is directly on INF2 regulation. In U2OS cells, K50Q- and K61Q-actin inhibit INF2-mediated actin polymerization when expressed at low levels. Direct-binding studies show that the CAP WH2 domain binds INF2-DID with submicromolar affinity but has weak affinity for actin monomers, while INF2-DAD binds CAP/K50Q-actin 5-fold better than CAP/WT-actin. Actin in complex with full-length CAP2 is predominately ATP-bound. These interactions suggest an inhibition model whereby CAP/KAc-actin serves as a bridge between INF2 DID and DAD. In U2OS cells, INF2 is 90-fold and 5-fold less abundant than CAP1 and CAP2, respectively, suggesting that there is sufficient CAP for full INF2 inhibition.


2017 ◽  
Vol 217 (1) ◽  
pp. 211-230 ◽  
Author(s):  
Maryam Izadi ◽  
Dirk Schlobinski ◽  
Maria Lahr ◽  
Lukas Schwintzer ◽  
Britta Qualmann ◽  
...  

Local actin filament formation powers the development of the signal-receiving arbor of neurons that underlies neuronal network formation. Yet, little is known about the molecules that drive these processes and may functionally connect them to the transient calcium pulses observed in restricted areas in the forming dendritic arbor. Here we demonstrate that Cordon-Bleu (Cobl)–like, an uncharacterized protein suggested to represent a very distantly related, evolutionary ancestor of the actin nucleator Cobl, despite having only a single G-actin–binding Wiskott–Aldrich syndrome protein Homology 2 (WH2) domain, massively promoted the formation of F-actin–rich membrane ruffles of COS-7 cells and of dendritic branches of neurons. Cobl-like hereby integrates WH2 domain functions with those of the F-actin–binding protein Abp1. Cobl-like–mediated dendritic branching is dependent on Abp1 as well as on Ca2+/calmodulin (CaM) signaling and CaM association. Calcium signaling leads to a promotion of complex formation with Cobl-like’s cofactor Abp1. Thus, Ca2+/CaM control of actin dynamics seems to be a much more broadly used principle in cell biology than previously thought.


2017 ◽  
Author(s):  
Priyanka Dutta ◽  
A.S. Jijumon ◽  
Mohit Mazumder ◽  
Drisya Dileep ◽  
Asish K. Mukhopadhyay ◽  
...  

AbstractType VI secretion systems (T6SS) plays a crucial role in Vibrio cholerae mediated pathogenicity and predation. Tip of T6SS is homologous to gp27/gp5 complex or tail spike of T4 bacteriophage. VgrG-1 of V. cholerae T6SS is unusual among other VgrG because its effector domain is trans-located into the cytosol of eukaryotic cells with an additional actin cross-linking domain (ACD) at its C terminal end. ACD of VgrG-1 (VgrG-1-ACD) causes T6SS dependent host cell cytotoxicity through actin cytoskeleton disruption to prevent bacterial engulfment by macrophages. ACD mediated actin cross-linking promotes survival of the bacteria in the small intestine of humans, along with other virulence factors; establishes successful infection with the onset of diarrhoea in humans. Our studies demonstrated VgrG-1-ACD can bind to actin besides actin cross-linking activity. Computational analysis of ACD revealed the presence of WH2 domain through which it binds actin. Mutations in WH2 domain lead to loss of actin binding in vitro. VgrG-1-ACD having the mutated WH2 domain cannot cross-link actin efficiently in vitro and manifests less actin cytoskeleton disruption when transfected in HeLa cells.Summary statementActin cross-linking (ACD) domain of VgrG-1 toxin of Type VI secretion in Vibrio cholera has WASP Homology domain 2 (WH2) domain. ACD interact with actin through WH2 domain, WH2 is essential for ACD mediated cross-linking and disruption of actin cytoskeleton in the host cell.


2017 ◽  
Vol 216 (5) ◽  
pp. 1267-1276 ◽  
Author(s):  
Thomas A. Burke ◽  
Alyssa J. Harker ◽  
Roberto Dominguez ◽  
David R. Kovar

VopL and VopF (VopL/F) are tandem WH2-domain actin assembly factors used by infectious Vibrio species to induce actin assembly in host cells. There is disagreement about the filament assembly mechanism of VopL/F, including whether they associate with the filament barbed or pointed end. Here, we used multicolor total internal reflection fluorescence microscopy to directly observe actin assembly with fluorescently labeled VopL/F. In actin monomer assembly reactions, VopL/F exclusively nucleate actin filament assemblies, remaining only briefly associated with the pointed end. VopL/F do not associate with the ends of preassembled filaments. In assembly reactions with saturating profilin, ∼85% of VopL/F molecules also promote nucleation from the pointed end, whereas a smaller fraction (<15%) associate for ∼25 s with the barbed end of preassembled filaments, inhibiting their elongation. We conclude that VopL/F function primarily as actin nucleation factors that remain briefly (∼100 s) associated with the pointed end.


2014 ◽  
Vol 289 (44) ◽  
pp. 30732-30742 ◽  
Author(s):  
Silvia Jansen ◽  
Agnieszka Collins ◽  
Leslie Golden ◽  
Olga Sokolova ◽  
Bruce L. Goode

Srv2/CAP is a conserved actin-binding protein with important roles in driving cellular actin dynamics in diverse animal, fungal, and plant species. However, there have been conflicting reports about whether the activities of Srv2/CAP are conserved, particularly between yeast and mammalian homologs. Yeast Srv2 has two distinct functions in actin turnover: its hexameric N-terminal-half enhances cofilin-mediated severing of filaments, while its C-terminal-half catalyzes dissociation of cofilin from ADP-actin monomers and stimulates nucleotide exchange. Here, we dissected the structure and function of mouse CAP1 to better understand its mechanistic relationship to yeast Srv2. Although CAP1 has a shorter N-terminal oligomerization sequence compared with Srv2, we find that the N-terminal-half of CAP1 (N-CAP1) forms hexameric structures with six protrusions, similar to N-Srv2. Further, N-CAP1 autonomously binds to F-actin and decorates the sides and ends of filaments, altering F-actin structure and enhancing cofilin-mediated severing. These activities depend on conserved surface residues on the helical-folded domain. Moreover, N-CAP1 enhances yeast cofilin-mediated severing, and conversely, yeast N-Srv2 enhances human cofilin-mediated severing, highlighting the mechanistic conservation between yeast and mammals. Further, we demonstrate that the C-terminal actin-binding β-sheet domain of CAP1 is sufficient to catalyze nucleotide-exchange of ADP-actin monomers, while in the presence of cofilin this activity additionally requires the WH2 domain. Thus, the structures, activities, and mechanisms of mouse and yeast Srv2/CAP homologs are remarkably well conserved, suggesting that the same activities and mechanisms underlie many of the diverse actin-based functions ascribed to Srv2/CAP homologs in different organisms.


Cytoskeleton ◽  
2014 ◽  
Vol 71 (3) ◽  
pp. 170-183 ◽  
Author(s):  
Yue Jiao ◽  
Matt Walker ◽  
John Trinick ◽  
Julien Pernier ◽  
Pierre Montaville ◽  
...  

2013 ◽  
Vol 126 (17) ◽  
pp. 4059-4059
Author(s):  
S. Schuler ◽  
J. Hauptmann ◽  
B. Perner ◽  
M. M. Kessels ◽  
C. Englert ◽  
...  

2012 ◽  
Vol 126 (1) ◽  
pp. 196-208 ◽  
Author(s):  
Susann Schüler ◽  
Judith Hauptmann ◽  
Birgit Perner ◽  
Michael M. Kessels ◽  
Christoph Englert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document