scholarly journals Contingency in the convergent evolution of a regulatory network: Dosage compensation in Drosophila

2018 ◽  
Author(s):  
Doris Bachtrog ◽  
Chris Ellison

The repeatability or predictability of evolution is a central question in evolutionary biology, and most often addressed in experimental evolution studies. Here, we infer how genetically heterogeneous natural systems acquire the same molecular changes, to address how genomic background affects adaptation in natural populations. In particular, we take advantage of independently formed neo-sex chromosomes in Drosophila species that have evolved dosage compensation by co-opting the dosage compensation (MSL) complex, to study the mutational paths that have led to the acquisition of 100s of novel binding sites for the MSL complex in different species. This complex recognizes a conserved 21-bp GA-rich sequence motif that is enriched on the X chromosome, and newly formed X chromosomes recruit the MSL complex by de novo acquisition of this binding motif. We identify recently formed sex chromosomes in the Drosophila repleta and robusta species groups by genome sequencing, and generate genomic occupancy maps of the MSL complex to infer the location of novel binding sites. We find that diverse mutational paths were utilized in each species to evolve 100s of de novo binding motifs along the neo-X, including expansions of microsatellites and transposable element insertions. However, the propensity to utilize a particular mutational path differs between independently formed X chromosomes, and appears to be contingent on genomic properties of that species, such as simple repeat or transposable element density. This establishes the “genomic environment” as an important determinant in predicting the outcome of evolutionary adaptations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


2016 ◽  
Vol 148 (1) ◽  
pp. 52-67 ◽  
Author(s):  
James A. Birchler

Dosage compensation in Drosophila involves an approximately 2-fold increase in expression of the single X chromosome in males compared to the per gene expression in females with 2 X chromosomes. Two models have been considered for an explanation. One proposes that the male-specific lethal (MSL) complex that is associated with the male X chromosome brings histone modifiers to the sex chromosome to increase its expression. The other proposes that the inverse effect which results from genomic imbalance would tend to upregulate the genome approximately 2-fold, but the MSL complex sequesters histone modifiers from the autosomes to the X to mute this autosomal male-biased expression. On the X, the MSL complex must override the high level of resulting histone modifications to prevent overcompensation of the X chromosome. Each model is evaluated in terms of fitting classical genetic and recent molecular data. Potential paths toward resolving the models are suggested.


2018 ◽  
Author(s):  
Edridge D’Souza ◽  
Elizaveta Hosage ◽  
Kathryn Weinand ◽  
Steve Gisselbrecht ◽  
Vicky Markstein ◽  
...  

ABSTRACTOver 50 years ago, Susumo Ohno proposed that dosage compensation in mammals would require upregulation of gene expression on the single active X chromosome, a mechanism which to date is best understood in the fruit fly Drosophila melanogaster. Here, we report that the GA-repeat sequences that recruit the conserved MSL dosage compensation complex to the Drosophila X chromosome are also enriched across mammalian X chromosomes, providing genomic support for the Ohno hypothesis. We show that mammalian GA-repeats derive in part from transposable elements, suggesting a mechanism whereby unrelated X chromosomes from dipterans to mammals accumulate binding sites for the MSL dosage compensation complex through convergent evolution, driven by their propensity to accumulate transposable elements.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 787-790
Author(s):  
P R da Cunha ◽  
B Granadino ◽  
A L Perondini ◽  
L Sánchez

Abstract Dosage compensation refers to the process whereby females and males with different doses of sex chromosomes have similar amounts of products from sex chromosome-linked genes. We analyzed the process of dosage compensation in Sciara ocellaris, Diptera of the suborder Nematocera. By autoradiography and measurements of X-linked rRNA in females (XX) and males (XO), we found that the rate of transcription of the single X chromosome in males is similar to that of the two X chromosomes in females. This, together with the bloated appearance of the X chromosome in males, support the idea that in sciarids dosage compensation is accomplished by hypertranscription of the X chromosome in males.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aimei Dai ◽  
Yushuai Wang ◽  
Anthony Greenberg ◽  
Zhongqi Liufu ◽  
Tian Tang

How pleiotropy influences evolution of protein sequence remains unclear. The male-specific lethal (MSL) complex in Drosophila mediates dosage compensation by 2-fold upregulation of the X chromosome in males. Nevertheless, several MSL proteins also bind autosomes and likely perform functions not related to dosage compensation. Here, we study the evolution of MOF, MSL1, and MSL2 biding sites in Drosophila melanogaster and its close relative Drosophila simulans. We found pervasive expansion of the MSL binding sites in D. melanogaster, particularly on autosomes. The majority of these newly-bound regions are unlikely to function in dosage compensation and associated with an increase in expression divergence between D. melanogaster and D. simulans. While dosage-compensation related sites show clear signatures of adaptive evolution, these signatures are even more marked among autosomal regions. Our study points to an intriguing avenue of investigation of pleiotropy as a mechanism promoting rapid protein sequence evolution.


2017 ◽  
Author(s):  
Yuchun Guo ◽  
Kevin Tian ◽  
Haoyang Zeng ◽  
Xiaoyun Guo ◽  
David Kenneth Gifford

ABSTRACTThe representation and discovery of transcription factor (TF) sequence binding specificities is critical for understanding gene regulatory networks and interpreting the impact of disease-associated non-coding genetic variants. We present a novel TF binding motif representation, the K-mer Set Memory (KSM), which consists of a set of aligned k-mers that are over-represented at TF binding sites, and a new method called KMAC for de novo discovery of KSMs. We find that KSMs more accurately predict in vivo binding sites than position weight matrix models (PWMs) and other more complex motif models across a large set of ChIP-seq experiments. KMAC also identifies correct motifs in more experiments than four state-of-the-art motif discovery methods. In addition, KSM derived features outperform both PWM and deep learning model derived sequence features in predicting differential regulatory activities of expression quantitative trait loci (eQTL) alleles. Finally, we have applied KMAC to 1488 ENCODE TF ChIP-seq datasets and created a public resource of KSM and PWM motifs. We expect that the KSM representation and KMAC method will be valuable in characterizing TF binding specificities and in interpreting the effects of non-coding genetic variations.


2017 ◽  
Author(s):  
Aline Muyle ◽  
Niklaus Zemp ◽  
Cécile Fruchard ◽  
Radim Cegan ◽  
Jan Vrana ◽  
...  

This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100044).Sex chromosomes have repeatedly evolved from a pair of autosomes1. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced Y gene expression and eventual Y gene loss. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2–4. However, the early steps in the evolution of dosage compensation remain unknown and dosage compensation is poorly understood in plants5. Here we show a novel dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno for the evolution of X inactivation in mammals.


2021 ◽  
Vol 4 (9) ◽  
pp. e202000996
Author(s):  
Claudia Isabelle Keller Valsecchi ◽  
Eric Marois ◽  
M Felicia Basilicata ◽  
Plamen Georgiev ◽  
Asifa Akhtar

Sex chromosomes induce potentially deleterious gene expression imbalances that are frequently corrected by dosage compensation (DC). Three distinct molecular strategies to achieve DC have been previously described in nematodes, fruit flies, and mammals. Is this a consequence of distinct genomes, functional or ecological constraints, or random initial commitment to an evolutionary trajectory? Here, we study DC in the malaria mosquito Anopheles gambiae. The Anopheles and Drosophila X chromosomes evolved independently but share a high degree of homology. We find that Anopheles achieves DC by a mechanism distinct from the Drosophila MSL complex–histone H4 lysine 16 acetylation pathway. CRISPR knockout of Anopheles msl-2 leads to embryonic lethality in both sexes. Transcriptome analyses indicate that this phenotype is not a consequence of defective X chromosome DC. By immunofluorescence and ChIP, H4K16ac does not preferentially enrich on the male X. Instead, the mosquito MSL pathway regulates conserved developmental genes. We conclude that a novel mechanism confers X chromosome up-regulation in Anopheles. Our findings highlight the pluralism of gene-dosage buffering mechanisms even under similar genomic and functional constraints.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 374 ◽  
Author(s):  
Svetlana A. Romanenko ◽  
Antonina V. Smorkatcheva ◽  
Yulia M. Kovalskaya ◽  
Dmitry Yu. Prokopov ◽  
Natalya A. Lemskaya ◽  
...  

The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.


Author(s):  
John C. Lucchesi

Clusters of genes that encode similar products, such as the β‎-globin, the ribosomal RNA (rRNA) and the histone genes, are regulated in a coordinated fashion. An extreme case of coordinate regulation—dosage compensation—involves the genes present on the sex chromosomes. In Drosophila males, a complex (MSL) associates with the X chromosome where it enhances the activity of most X-linked genes. In Caenorhabditis, a complex (DCC) decreases the level of transcription of both X chromosomes in the XX hermaphrodite. In mammals, dosage compensation is achieved by the inactivation, early during development, of most X-linked genes on one of the two X chromosomes in females. In the mammalian embryo, X inactivation of either X chromosome is random and clonally inherited. The mechanism involves the synthesis of an RNA (Tsix) that protects one of the two Xs from inactivation, and of another RNA (Xist) that coats the other X chromosome and recruits histone- and DNA-modifying enzymes.


Sign in / Sign up

Export Citation Format

Share Document